SOCIETA' CONSORTILE:

NIER Ingegneria Polistudio A.E.S. Studio Majowiecki TECO+ Valore Impresa studio tecnico associato con sede in via Tiarini 22, 40129 Bologna , tel / fax: 051352493 / 051379161 , e-mail: teco@studioteco.it

Via Altabella,3 40126 Bologna Tel: +39 051 234359 Fax: +39 051 239530 info@tecnion.net www.tecnion.net P.iva:02606651202

SOCIO CAPOCOMMESSA:

GRUPPO DI PROGETTAZIONE:

progettazione architettonica ing. Antonio Planchenstainer (capogruppo) arch. Luigi Benatti arch. Luca Jop ing. Carlo Rotellini arch. Benedetta Casadei (collaboratore)

progettazione strutture ing. Massimo Majowiecki

progettazione impianti elettrici ing. Paolo Rocchi

COMUNE DI MILANO Provincia di Milano

PROGETTO DEFINITIVO
E PROGETTO DELLA SICUREZZA
PER I LAVORI DI RIFACIMENTO
DELLA COPERTURA E
L'AUMENTO DI CAPIENZA
DEL PALALIDO DI MILANO

COMMITTENTE:
MILANO SPORT

PROGETTO DEFINITIVO STRUTTURALE

STATO DI PROGETTO RELAZIONE DI CALCOLO STRUTTURE COPERTURA

RS02

MARZO 2011

data di emissione: 31/03/2011

disegnato da: GP pprovato da MM ESTATINA.DWG

MILANO COPERTURA PALALIDO

RELAZIONE DI CALCOLO

INDICE

1	Introduz	ione	3
	1.1 Des	scrizione dell'intervento	3
	1.2 No	mativa adottata	4
	1.2.1	Azioni	4
	1.2.2	Costruzioni in zona sismica	4
	1.2.3	Strutture in acciaio e c.a.	5
	1.3 Vita	a nominale e periodo di ritorno delle azioni	5
		ncezione strutturale	
	1.4.1	Estradosso	8
	1.4.2	Intradosso	8
	1.4.3	Diagonali	9
	1.4.4	Estradosso, travi laterali e controventi laterali	9
	1.4.5	Nodi vincolati	9
	1.5 Mar	teriali impiegati	14
	1.5.1	Struttura della reticolare	14
	1.5.2	Acciaio per perni	15
	1.5.3	Pioli di ancoraggio	15
	1.5.4	Bulloni	15
	1.5.5	Saldature e processi di saldatura	15
	1.5.6	Protezione dalla corrosione	15
	1.5.7	Protezione dal fuoco	15
2	Analisi d	lei carichi	16
	2.1 Azi	one della neve	16
	2.1.1	Valore caratteristico della neve al suolo	16
	2.1.2	Coefficiente di esposizione	16
	2.1.3	Coefficiente di forma	16
	2.1.4	Pressione della neve	16
	2.2 Azi	one del vento	
	2.2.1	Velocità base di riferimento	16
	2.2.2	Categoria di esposizione	
	2.2.3	Coefficiente di topografia	
	2.2.4	Coefficiente dinamico	
	2.2.5	Coefficiente di esposizione	
	2.2.6	Pressione del vento con c _p unitario	17
	2.2.7	Coefficiente di pressione esterna	18
	2.2.8	Coefficiente di pressione interna.	19
	2.2.9	Coefficiente di attrito per l'azione tangente	19
	2.3 Car	ichi permanenti portati dalla struttura	19
	2.3.1	Carico dovuto al pacchetto di copertura	19
	2.3.2	Carico dovuto agli impianti	20
	2.4 Pes	o proprio della struttura	20

	2.4.1	Peso dei tubi costituenti la reticolare	20
	2.4.2	Peso delle unioni delle aste	20
	2.4.3	Peso dovuto alla lamiera	20
	2.4.4	Peso degli arcarecci di copertura	22
	2.5 Az	ione termica	25
	2.5.1	Valore dello sbalzo termico	25
	2.6 Az	ione sismica	25
	2.6.1	Parametri di calcolo Analisi Dinamica Erro	ore. Il segnalibro non è definito.
	2.6.2	TU 2008 SLV H Erro	ore. Il segnalibro non è definito.
	2.6.3	TU 2008 SLV V Erro	ore. Il segnalibro non è definito.
	2.6.4	Fattori di partecipazione per il calcolo delle masse:	
	definito) .	
	2.6.5	Direzioni d'ingresso del Sisma Erro	ore. Il segnalibro non è definito.
	2.7 Co	mbinazione dei carichi	28
	2.7.1	Schematizzazione dei carichi applicati	28
	2.7.2	Combinazioni SLU	
	2.7.3	Combinazioni SLE rara	41
	2.7.4	Combinazioni SLE frequente	42
	2.7.5	Combinazioni SLE quasi permanente	42
	2.7.6	Combinazioni Sismiche SLV	43
	2.7.7	Combinazioni non fattorizzate	43
3	Raccolta	a dei risultati	44
	3.1 Rea	azione dei vincoli	44
	3.1.1	Combinazioni non fattorizzate	44
	3.2 Spc	ostamenti nodali	72
	3.2.1	Combinazioni rare	72
	3.2.2	Combinazioni quasi permanenti	72
	3.3 Ve	rifica della reticolare	73
	3.3.1	Ipotesi di base per la verifica della reticolare	73
	3.3.2	Percentuale di utilizzo delle aste della reticolare	
	3.3.3	Esempio di verifica di un'asta della reticolare	74
	3.4 Ve	rifica delle travi laterali	78
	3.4.1	Verifica di resistenza delle travi laterali	78

1 INTRODUZIONE

1.1 Descrizione dell'intervento

Il Palalido di Milano si trova in Piazza Carlo Stuparich 1. Le esatte coordinate geografiche sono: 45.482576[°] Latitudine Nord e 9.142221 Longitudine Est. In Figura 1 è illustrata l'attuale stato del palalido di Milano.

Figura 1: Stato attuale del palalido

La presente relazione tratta la progettazione strutturale di una nuova copertura del palazzetto dello sport realizzata con una reticolare spaziale come illustrato in Figura 2.

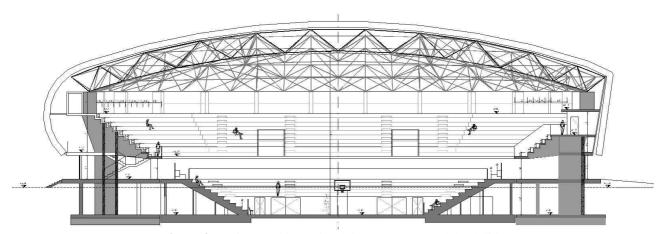


Figura 2: Sezione architettonica del nuovo progetto del palalido

1.2 Normativa adottata

- DPR 06/06/2001 nr. 380. "Testo unico delle disposizioni legislative e regolamentari in materia edilizia".
- Legge n. 1086 del 5 Novembre 1971. "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- D.M. del 14 Settembre 2005. "Norme tecniche per le costruzioni".
- D.M. del 14 Gennaio 2008. "Norme tecniche per le costruzioni".
- Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. del 14 Gennaio 2008.

Per quanto non compreso nelle precedenti normative si fa riferimento alle seguenti:

1.2.1 Azioni

- Istruzioni per la valutazione delle: Azioni sulle Costruzioni. (C.N.R. 10012/85)
- D.M. del 16 gennaio 1996. "Norme tecniche relative ai «Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi»".
- Circolare del 4 luglio 1996. "Istruzioni per l'applicazione delle «Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi»".
- Eurocodice 1 EN1991. "Basi della progettazione ed azioni sulle strutture".
- CNR-DT 207/2008 "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni"

1.2.2 Costruzioni in zona sismica

- Legge n. 64 del 2 febbraio 1974. "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- D.M. del 3 marzo 1975. "Approvazione delle norme tecniche per le costruzioni in zone sismiche".
- D.M. del 3 marzo 1975. "Disposizioni concernenti l'applicazione delle norme tecniche per le costruzioni in zone sismiche".
- D.M del 16 gennaio 1996. "Norme tecniche per le costruzioni in zone sismiche".
- Circolare 10 aprile 1997, n.65/AA.GG. "Istruzioni per l'applicazione delle «Norme tecniche per le costruzioni in zone sismiche» di cui al decreto ministeriale 16 gennaio 1996.
- Eurocodice 8. "Regole progettuali per le strutture antisismiche".
- Ordinanza P.C.M. n° 3274 del 20/03/2003. "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica".
- "Elementi informativi sull'Ordinanza P.C.M. n° 3274 del 20/03/2003, recante "Primi elementi in materia di crriteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" del 29/03/2004.
- "Nota esplicativa dell'Ordinanza P.C.M. n° 3274 del 20/03/2003, recante "Primi elementi in materia di crriteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" del 04/06/2003.
- Delibera della Giunta Regione Emilia Romagna n.772 del 26/04/2004 "Modifica alla deliberazione di giunta regionale n. 1435/2003 in merito alla durata del regime transitorio di cui all'articolo 2, comma 2, terzo capoverso dell'Ordinanza del Presidente del Consiglio dei Ministri n.3274 del 2003".
- Ordinanza P.C.M. n° 3379 del 05/11/2004. "Disposizioni urgenti di protezione civile".

Delibera della Giunta Regione Emilia Romagna n.2329 del 22/11/2004 "Ordinanza del P.C.M. n. 3274/2003, art.2, comma 2, terzo capoverso. Presa d'atto della proroga del regime transitorio disposta dall'art. 6 dell'ordinanza del P.C.M. n. 3379/2004".

1.2.3 Strutture in acciaio e c.a.

- D.M. del 27 luglio 1985. "Norme Tecniche per l'esecuzione delle opere in C.A. normale e precompresso e per le strutture metalliche".
- Circolare M.LL.PP. del 31 Ottobre 1986: "Istruzioni relative alle norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per strutture metalliche".
- D.M. del 14 febbraio 1992 "Norme Tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche".
- Circ. Min. LL.PP. 24.06.1993 n° 37406/STC "Istruzioni relative alle norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche di cui al D.M. 14.02.1992".
- D.M. del 9 gennaio 1996. "Norme Tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche".
- Circ. Min. LL.PP. 15 ottobre 1996 n. 252AA.GG/S.T.C. "Istruzioni per l'applicazione delle norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche".
- CNR 10011/97 Costruzioni in acciaio. Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione.
- CNR 10016/98 Strutture composte di acciaio e calcestruzzo. Istruzioni per l'impiego nelle costruzioni.
- CNR 10018/89 Apparecchi d'appoggio per le costruzioni. Istruzioni per l'impiego.
- CNR 10024/86 Analisi di strutture mediante elaboratore: impostazione e redazione delle relazioni di calcolo.
- CNR 10025/98 Istruzioni per il progetto, l'esecuzione ed il controllo delle strutture prefabbricate in calcestruzzo.
- CNR 10037/86 Mensole tozze e selle gerber.
- Presidenza del Consiglio Superiore dei Lavori Pubblici Servizio Tecnico Centrale Linee Guida sul calcestruzzo strutturale (19/11/96)
- Eurocodice 2 EN1992. "Progettazione delle strutture di calcestruzzo".
- Eurocodice 3 EN1993-1-1 "Progettazione delle strutture di acciaio: regole generali e regole per gli edifici".
- Eurocodice 3 EN1993-1-3 "Progettazione delle strutture di acciaio: regole generali e regole supplementari per profili formati a freddo e lamiere grecate".
- Eurocodice 4 EN1994. "Progettazione delle strutture composte acciaio/calcestruzzo".

1.3 Vita nominale e periodo di ritorno delle azioni

Si assume una vita nominale della struttura $V_N = 50 [anni]$ e si considera la costruzione ordinaria. Per cui in base a quanto esposto nell'appendice A delle CNR-DT 207/2008 si può considerare un periodo di ritorno $T_R = 50 [anni]$ per l'azione del vento e si assume lo stesso per l'azione della neve e della varizione termica.

1.4 Concezione strutturale

La soluzione strutturale adottata è una reticolare spaziale a doppio strato di maglia rettangolare di dimensioni medie di 6,5[m] per 6,5[m]. Lo spessore della reticolare spaziale è di 2,5[m] fra l'asse dei tubi di estradosso e l'asse dei tubi di intradosso.

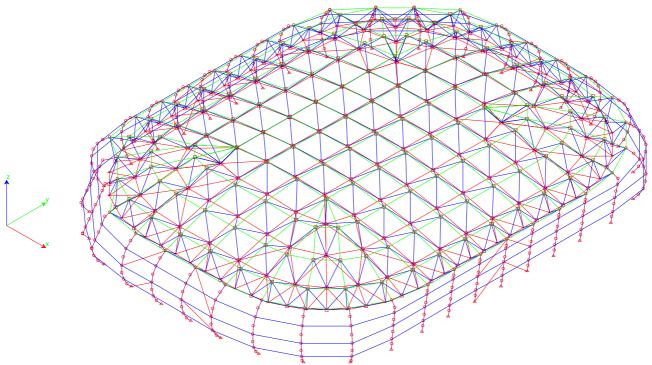


Figura 3: Vista assonometrica dell'intero modello di calcolo della copertura del Palalido

Sul perimetro esterno della copertura sono vincolate delle travi HEA 240 che sostengono la baraccatura laterale. Queste travi sono incernierate ai nodi perimetrali della reticolare spaziale di copertura ad un estremo e nell'altro sono vincolate nel piano orizzontale al solaio di quota 4.17[m]. Tutto il carico vertiale agente sulle travi laterali si scarica quindi sulla reticolare di copertura, mentre il solaio a quota 4.17[m] assorbe metà del carico orizzontale che arriva sulle travi laterali: lo schema statico delle travi laterali è quindi quello di travi semplicemente appoggiate soggette a uno sforzo di trazione e flessione, essendo esse appese alla reticolare di copertura.

Per vincolare le travi laterali alla rotazione attorno all'asse verticale è stato inserito in mezzeria un tubo orizzontale che corre lungo tutto il perimetro dell'edificio. Questo tubo permette quindi di tramettere gli sforzi torcenti che agiscono sulle travi alle 4 coppie di controventi laterali le quali riportano a loro volta gli sforzi sulla reticolare di copertura e sul solaio a quota 4.17[m] (Figura 4).

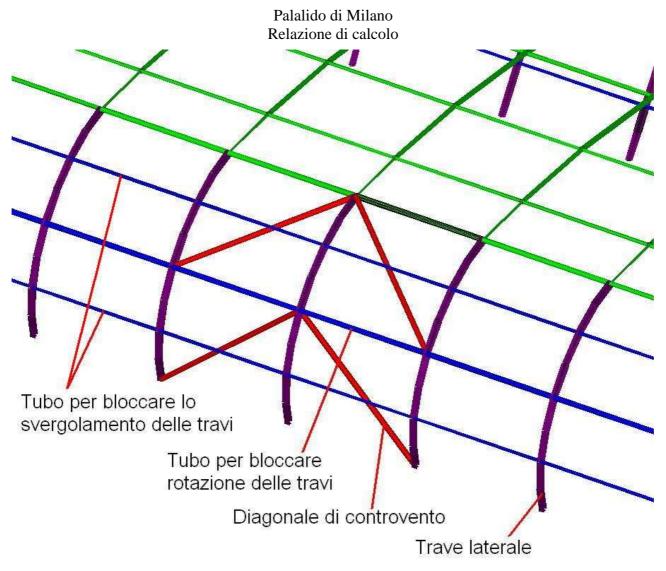


Figura 4: Particolare delle travi laterali

I tubi orizzontali che collegano le travi laterali permettono anche di fornire a quest'ultime un vincolo stabilizzante contro il fenomeno dello svergolamento. Particolare cura dovrà quindi essere prestata nella progettazione del dettaglio del collegamento fra le travi orizzontali e quelle laterali in modo da assicurare a quest'ultime un vincolo alla rotazione attorno al proprio asse nel punto in cui il tubo orizzontale si lega a loro.

1.4.1 Estradosso

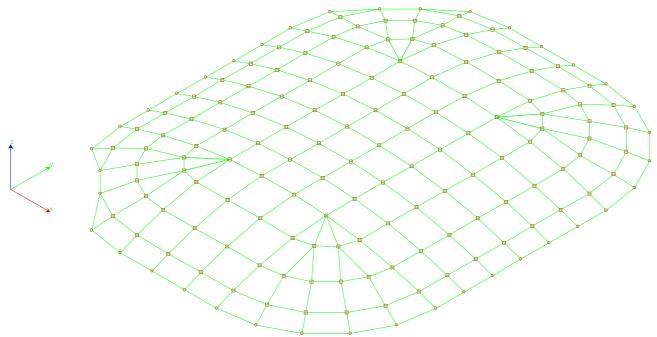


Figura 5: Vista assonometrica dell'estradosso della copertura

1.4.2 Intradosso

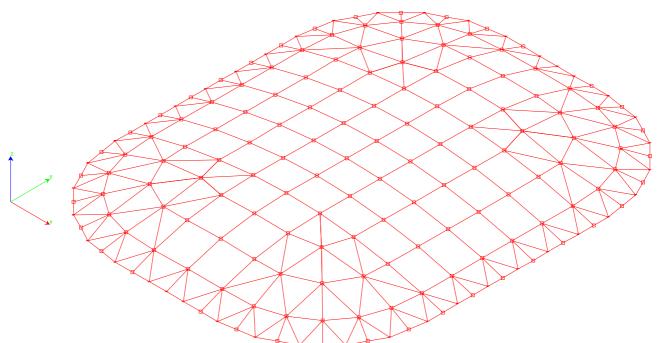


Figura 6: Vista assonometrica dell'intradosso della copertura

1.4.3 Diagonali

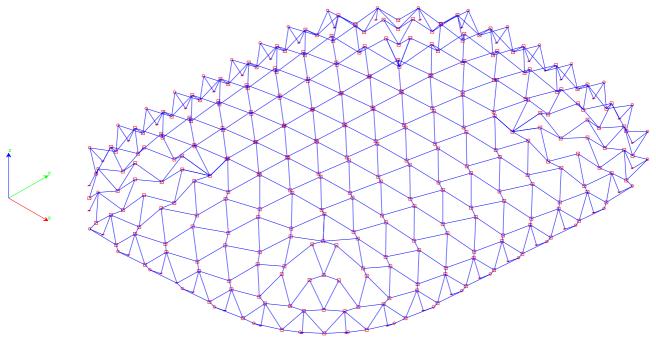


Figura 7: Vista assonometrica dei diagonali della copertura

1.4.4 Estradosso, travi laterali e controventi laterali

Figura 8: Vista assonometrica dell'estradosso copertura, delle travi laterali e dei controventi

1.4.5 Nodi vincolati

Elenco dei nodi vincolati presenti nell'intradosso della copertura:

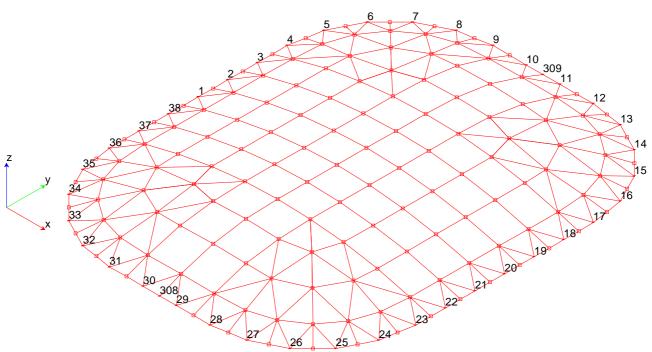


Figura 9: Numerazione dei nodi vincolati presenti all'intradosso della copertura

Nodo	х	у	Z	Ux	Uy	Uz	Rx	Ry	Rz
	[m]	[m]	[m]						
1	126.440	41.370	11.77	0	1	1	1	1	1
2	126.440	46.988	11.77	0	0	1	1	1	1
3	126.440	52.607	11.77	0	0	1	1	1	1
4	126.440	58.226	11.77	0	0	1	1	1	1
5	127.397	64.269	11.77	0	0	1	1	1	1
6	130.174	69.720	11.77	0	0	1	1	1	1
7	134.500	74.046	11.77	0	0	1	1	1	1
8	139.952	76.824	11.77	0	0	1	1	1	1
9	145.994	77.781	11.77	0	0	1	1	1	1
10	152.360	77.781	11.77	0	0	1	1	1	1
11	158.726	77.781	11.77	0	0	1	1	1	1
12	165.092	77.781	11.77	0	0	1	1	1	1
13	171.134	76.824	11.77	0	0	1	1	1	1
14	176.586	74.046	11.77	0	0	1	1	1	1
15	180.912	69.720	11.77	0	0	1	1	1	1
16	183.689	64.269	11.77	0	0	1	1	1	1
17	184.646	58.226	11.77	0	0	1	1	1	1
18	184.646	52.607	11.77	0	0	1	1	1	1
19	184.646	46.988	11.77	0	0	1	1	1	1
20	184.646	41.370	11.77	0	1	1	1	1	1
21	184.646	35.751	11.77	0	0	1	1	1	1
22	184.646	30.132	11.77	0	0	1	1	1	1
23	184.646	24.513	11.77	0	0	1	1	1	1
24	183.689	18.470	11.77	0	0	1	1	1	1
25	180.912	13.019	11.77	0	0	1	1	1	1
26	176.586	8.693	11.77	0	0	1	1	1	1
27	171.134	5.915	11.77	0	0	1	1	1	1
28	165.092	4.958	11.77	0	0	1	1	1	1
29	158.726	4.958	11.77	0	0	1	1	1	1
30	152.360	4.958	11.77	0	0	1	1	1	1
31	145.994	4.958	11.77	0	0	1	1	1	1
32	139.952	5.915	11.77	0	0	1	1	1	1
33	134.500	8.693	11.77	0	0	1	1	1	1
34	130.174	13.019	11.77	0	0	1	1	1	1
35	127.397	18.470	11.77	0	0	1	1	1	1
36	126.440	24.513	11.77	0	0	1	1	1	1
37	126.440	30.132	11.77	0	0	1	1	1	1
38	126.440	35.751	11.77	0	0	1	1	1	1
308	155.543	4.958	11.77	1	0	0	1	1	1
309	155.543	77.781	11.77	1	0	0	1	1	1

Elenco dei nodi vincolati presenti al termine delle travi laterali:

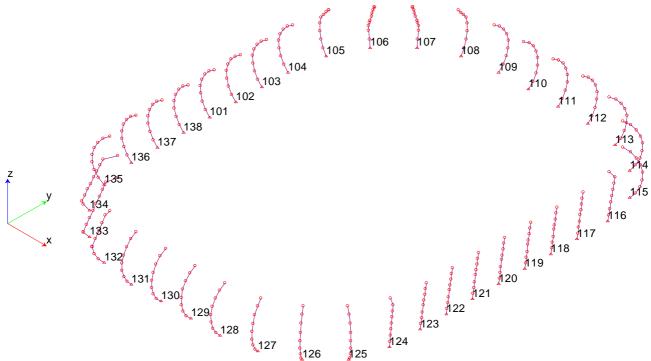


Figura 10: Numerazione dei nodi vincolati presenti al termine delle travi laterali

Nodo	х	у	Z	Ux	Uy	Uz	Rx	Ry	Rz
	[m]	[m]	[m]						
101	123.368	41.3695	4.1242	1	1	0	0	0	0
102	123.368	46.9884	4.1242	1	1	0	0	0	0
103	123.368	52.6073	4.1242	1	1	0	0	0	0
104	123.368	58.2262	4.1242	1	1	0	0	0	0
105	124.4753	65.2174	4.1242	1	1	0	0	0	0
106	127.6888	71.5243	4.1242	1	1	0	0	0	0
107	132.694	76.5294	4.1242	1	1	0	0	0	0
108	139.0008	79.7429	4.1242	1	1	0	0	0	0
109	145.992	80.8502	4.1242	1	1	0	0	0	0
110	152.3593	80.8502	4.1242	1	1	0	0	0	0
111	158.7266	80.8502	4.1242	1	1	0	0	0	0
112	165.0939	80.8502	4.1242	1	1	0	0	0	0
113	172.0851	79.7429	4.1242	1	1	0	0	0	0
114	178.392	76.5294	4.1242	1	1	0	0	0	0
115	183.3971	71.5243	4.1242	1	1	0	0	0	0
116	185.4265	64.8329	4.1242	1	1	0	0	0	0
117	185.4265	58.2262	4.1242	1	1	0	Ō	Ō	Ō
118	185.4265	52.6073	4.1242	1	1	0	Ō	Ō	Ō
119	185.4265	46.9884	4.1242	1	1	0	Ō	Ō	Ō
120	185.4265	41.3695	4.1242	1	1	0	0	0	0
121	185.4265	35.7506	4.1242	1	1	Ō	Ō	Ō	0
122	185.4265	30.1317	4.1242	1	1	0	0	0	0
123	185.4265	24.5128	4.1242	1	1	0	Ō	Ō	0
124	185.4265	17.9061	4.1242	1	1	0	Ō	Ō	0
125	183.3971	11.2147	4.1242	1	1	0	Ō	Ō	Ō
126	178.392	6.2096	4.1242	1	1	Ō	Ō	Ō	Ō
127	172.0851	2.9961	4.1242	1	1	Ō	Ō	Ō	Ō
128	165.0939	1.8888	4.1242	1	1	Ō	Ö	ō	Ō
129	158.7266	1.8888	4.1242	1	1	0	Ö	ō	Ö
130	152.3593	1.8888	4.1242	1	1	Ō	Ö	ō	Ö
131	145.992	1.8888	4.1242	1	1	Ō	Ö	ō	Ö
132	139.0008	2.9961	4.1242	1	1	Ö	Ö	ō	Ö
133	132.6939	6.2096	4.1242	1	1	0	Ö	ō	ō
134	127.6888	11.2148	4.1242	1	1	Ō	ō	ō	Ö
135	124.4753	17.5216	4.1242	1	1	0	0	0	ō
136	123.368	24.5128	4.1242	1	1	0	0	0	Ö
137	123.368	30.1317	4.1242	1	1	0	Ö	0	Ö
138	123.368	35.7506	4.1242	1	1	0	0	0	0

1.5 Materiali impiegati

1.5.1 Struttura della reticolare

Mat.n.	Tipo	E [MPa]	V	eps	peso spec. [KN/m³]
1	Acciaio	210000	0.33	0.000012	78.10

Temperatura minima di servizio -25° (rif. 4.2.4.1.5 D.M. 14/01/08).

Tubi circolari finiti a caldo secondo EN 10210-2

Acciaio da carpenteria secondo UNI 7070 (EN 10025):

Fe 510 (S355) grado C con valore caratterístico minimo della tensione a snervamento fyk=355[N/mm²]

Designazione europea: EN 10210-S 355 J2

Table 2.1: Maximum permissible values of element thickness t in mm

		Cha	arpy								Re	eferen	ce te	mper	ature	T _{Ed} [°	C1							
Steel	Sub-	ene	ergy	10	0	-10	-20	-30	-40	-50		0	-10	-20	I	1 -	-50	10	n	-10	-20	-30	-40	-50
grade	grade	. C\	/N	10	١	-10	-20	-30	40	-50	10		-10	-20	-30	40	-50	10	·	-10	-20	-30	40	-50
	_	at T [°C]	J_{min}			σ _{Ed} =	0,75	f _y (t)					σ _{Ed} =	0,50	f _y (t)					σ_{Ed}	0,25	f _y (t)		
S235	JR	20	27	60	50	40	35	30	25	20	90	75	65	55	45	40	35	135	115	100	85	75	65	60
	J0	0	27	90	75	60	50	40	35	30	125	105	90	75	65	55	45	175	155	135	115	100	85	75
	J2	-20	27	125	105	90	75	60	50	40	170	145	125	105	90	75	65	200	200	175	155	135	115	100
S275	JR	20	27	55	45	35	30	25	20	15	80	70	55	50	40	35	30	125	110	95	80	70	60	55
	J0	0	27	75	65	55	45	35	30	25	115	95	80	70	55	50	40	165	145	125	110	95	80	70
	J2	-20	27	110	95	75	65	55	45	35	155	130	115	95	80	70	55	200	190	165	145	125	110	95
	M,N	-20	40	135	110	95	75	65	55	45	180	155	130	115	95	80	70	200	200	190	165	145	125	110
	ML,NL	-50	27	185	160	135	110	95	75	65	200	200	180	155	130	115	95	230	200	200	200	190	165	145
S355	JR	20	27	40	35	25	20	15	15	10	65	55	45	40	30	25	25	110	95	80	70	60	55	45
	J0	0	27	60	50	40	35	25	20	15	95	80	65	55	45	40	30	150	130	110	95	80	70	60
	J2	-20	27	90	75	60	50	40	35	25	135	110	95	80	65	55	45	200	175	150	130	110	95	80
	K2,M,N	-20	40	110	90	75	60	50	40	35	155	135	110	95	80	65	55	200	200	175	150	130	110	95
	ML,NL	-50	27	155	130	110	90	75	60	50	200	180	155	135	110	95	80	210	200	200	200	175	150	130
S420	M,N	-20	40	95	80	65	55	45	35	30	140	120	100	85	70	60	50	200	185	160	140	120	100	85
0.400	ML,NL	-50	27	135	115	95	80	65	55	45	190	165	140	120	100	85	70	200	200	200	185	160	140	120
S460	Q	-20	30	70	60	50	40	30	25	20	110	95	75	65	55	45	35	175	155	130	115	95	80	70
	M,N QL	-20 -40	40 30	90 105	70	60 70	50	40 50	30 40	25 30	130 155	110 130	95	75	65	55	45	200	175 200	155	130	115	95	80
	ML.NL	-50	27	125	90 105	90	60 70	60	50	40	180	155	110 130	95 110	75 95	65 75	55 65	200	200	175 200	155 175	130 155	115	95 115
	QL1	-60	30	150	125	105	90	70	60	50	200	180	155	130	110	95	75	215	200	200	200	175	155	130
S690	Q	0	40	40	30	25	20	15	10	10	65	55	45	35	30	20	20	120	100	85	75	60	50	45
3090	Q	-20	30	50	40	30	25	20	15	10	80	65	55	45	35	30	20	140	120	100	85	75	60	50
	QL	-20	40	60	50	40	30	25	20	15	95	80	65	55	45	35	30	165	140	120	100	85	75	60
	QL	-40	30	75	60	50	40	30	25	20	115	95	80	65	55	45	35	190	165	140	120	100	85	75
	QL1	-40	40	90	75	60	50	40	30	25	135	115	95	80	65	55	45	200	190	165	140	120	100	85
	QL1	-60	30	110	90	75	60	50	40	30	160	135	115	95	80	65	55	200	200	190	165	140	120	100

Tabella 1: Massimo spessore degli elementi secondo EN 1993-1-10: 2005 (E)

1.5.2 Acciaio per perni

Acciaio 30 CrNiMo 8 secondo EN 10083: valore caratteristico minimo della tensione a snervamento fyk = 700[N/mm²] valore caratteristico minimo della tensione a rottura fuk = 900 [N/mm²]

1.5.3 Pioli di ancoraggio

Tipo Nelson o equivalenti, in accordo con 11.3.4.7 del D.M. 14/01/08, fyk $\geq 355[N/mm^2]$

1.5.4 Bulloni

Collegamenti bullonati secondo UNI EN ISO 4016:2002 e UNI EN ISO 5592:1968 viti classe 8.8 e 10.9 (UNI EN ISO 898-1:2001) dadi classe 8 e classe 10 rosette acciaio C50 (UNI EN 10083-2:2006) piastrine acciaio C50 (UNI EN 10083-2:2006)

Coppie di serraggio secondo D.M. 09.01.1996 e D.M. 14/01/2008

I bulloni devono essere montati con una rosetta sotto la testa della vite e una rosetta sotto il dado. I bulloni dovranno essere contrassegnati con le indicazioni del produttore e la classe di resistenza. I bulloni disposti verticalmente avranno la testa della vite rivolta verso l'alto e il dado verso il basso.

1.5.5 Saldature e processi di saldatura

Si veda D.M. 14/01/2008 p.to 11.3.4.5 Collegamenti saldati secondo D.M. 14/01/2008, D.M. 09/01/1996, UNI 10011 e specifiche I.I.S.

1.5.6 Protezione dalla corrosione

Protezione dalla corrosione mediante zincatura a caldo, secondo UNI 5744 o ciclo di verniciatura secondo specifiche di capitolato.

I profili chiusi a cassone devono avere le saldature continue tali da impedire le infiltrazioni di acqua e quindi la formazione di un ambiente umido favorevole allo sviluppo di fenomeni corrosivi non controllabili. In alternativa e se le dimensioni geometriche lo consentono occorre prevedere la possibilità di accedere al loro interno per interventi di manutenzione con periodicita' da stabilire in funzione del trattamento protettivo iniziale e dell'aggressività dell'ambiente.

1.5.7 Protezione dal fuoco

Protezione dal fuoco mediante vernici intumescenti o altro secondo specifiche di capitolato (vedere relazione tecnica specifica).

2 ANALISI DEI CARICHI

2.1 Azione della neve

2.1.1 Valore caratteristico della neve al suolo

Per la zona di Milano e quota della costruzione $a_s < 200[m]$ si ha un valore caratteristico della neve al suolo pari a:

$$q_{sk} = 1.50 \lceil kN/m^2 \rceil = 150 \lceil kg/m^2 \rceil$$

2.1.2 Coefficiente di esposizione

Considerando una classe topografica normale per il sito dove sorge la costruzione, il coefficiente di esposizione si assume pari a:

$$C_E = 1$$

2.1.3 Coefficiente di forma

Per la copertura si assume un coefficiente di forma pari a $\mu_1 = 0.8$ per le supoerfici la cui pendenza rispetto all'orizzontale sia di $\alpha < 60^{\circ}$. Per le superfici la cui pendenza è $\alpha > 60^{\circ}$ si considera un coefficiente di forma pari a $\mu_1 = 0$ coerentemente con quanto esposto nel punto C3.4.5.1 delle istruzioni del D.M. 2008.

Non si tiene conto delle problatiche legate al fenomeno dell'accumulo della neve, data la forma della copertura e dato che non ci sono vicino ad essa edifici più alti.

2.1.4 Pressione della neve

Per le superfici la cui pendenza rispetto all'orizzontale risulta α < 60° si ha che il carico della neve è pari a:

$$p = q_{sk} \cdot C_E \cdot \mu_1 = 1,50 \left[\frac{KN}{m^2} \right] \cdot 1 \cdot 0,8 = 1,2 \left[\frac{KN}{m^2} \right] = 120 \left[\frac{kg}{m^2} \right]$$

2.2 Azione del vento

2.2.1 Velocità base di riferimento

La regione in cui ha sede la costruzione è la Lombardia per cui le seguenti grandezze assumono i valori:

$$\begin{cases}
 v_{b,0} = 25[m/s] \\
 a_0 = 1000[m] \\
 k_a = 0,010[1/s]
 \end{cases}$$

Dato che la costruzione sorge ad una quota sul livello del mare $a_s < a_0$, il coefficiente di altitudine è pari a $c_a = 1$, per cui la velocità di riferimento per un periodo di ritorno di 50 anni è pari a:

$$v_b = v_{b,0} \cdot c_a = 25 [m/s]$$

2.2.2 Categoria di esposizione

Si assume la classe di rugosità del terreno di tipo B.

Essendo la Lombardia in zona 1 e il sito a una distanza maggiore di 30 [Km] dal mare e di altitudine inferiore a 500 [m] si ottiene che il sito è di classe di esposizione IV, per cui:

$$\begin{cases} k_r = 0,22 \\ z_0 = 0,3[m] \\ z_{\min} = 8[m] \end{cases}$$

2.2.3 Coefficiente di topografia

Si assume il coefficiente di topografia pari a $c_t = 1$.

2.2.4 Coefficiente dinamico

Si assume il coefficiente di topografia pari a $c_d = 1$.

2.2.5 Coefficiente di esposizione

La copertura del palazzetto è considerata a livello aerodinamico come una copertura a volta cilindrica con h = 13.5[m], f = 5.6[m].

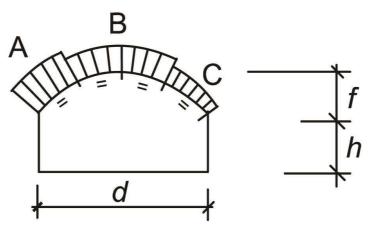


Figura 11: Schema dei parametri geometrici della copertura del palazzetto

Come larghezza dell'edificio si considera per il vento che proviene in direzione x: $d_x = 77[m]$, mentre per il vento che proviene in direzione y: $d_y = 63[m]$.

Come altezza di riferimento si assume $z_{\text{cop}} = h + f \approx 20[m]$ per la copertura e $z_{\text{lat}} = h = 13,5[m]$ per le pareti laterali come indicato nell'Eurocodice EN 1991-1-4:2005 ai punti 7.2.2 e 7.2.8. Il coefficiente di esposizione è fornito dalla relazione:

$$c_{e,\text{cop}} = k_r^2 \cdot \ln\left(\frac{z_{\text{cop}}}{z_0}\right) \cdot c_t \cdot \left[\ln\left(\frac{z_{\text{cop}}}{z_0}\right) \cdot c_t + 7\right] = 0, 22^2 \cdot \ln\left(\frac{20}{0,3}\right) \cdot 1 \cdot \left[\ln\left(\frac{20}{0,3}\right) \cdot 1 + 7\right] = 2, 28$$

$$c_{e,\text{lat}} = k_r^2 \cdot \ln\left(\frac{z_{\text{lat}}}{z_0}\right) \cdot c_t \cdot \left[\ln\left(\frac{z_{\text{lat}}}{z_0}\right) \cdot c_t + 7\right] = 0, 22^2 \cdot \ln\left(\frac{13,5}{0,3}\right) \cdot 1 \cdot \left[\ln\left(\frac{13,5}{0,3}\right) \cdot 1 + 7\right] = 1,99$$

2.2.6 Pressione del vento con c_p unitario

Il valore della pressione del vento considerando un doefficiente di pressione unitario è pari a:

$$(p_{v}/c_{p})_{cop} = \frac{1}{2} \cdot \rho \cdot v_{b}^{2} \cdot c_{e,cop} = \frac{1}{2} \cdot 1,25 \left[kg/m^{3} \right] \cdot 25^{2} \left[m^{2}/s^{2} \right] \cdot 2,28 = 0,891 \left[KN/m^{2} \right]$$

$$(p_{v}/c_{p})_{lat} = \frac{1}{2} \cdot \rho \cdot v_{b}^{2} \cdot c_{e,lat} = \frac{1}{2} \cdot 1,25 \left[kg/m^{3} \right] \cdot 25^{2} \left[m^{2}/s^{2} \right] \cdot 1,99 = 0,777 \left[KN/m^{2} \right]$$

2.2.7 Coefficiente di pressione esterna

• Coefficiente di pressione per le pareti laterali

Per le pareti laterali si considerano i coefficienti di pressione calcolati per le pareti laterali di un cilindro a base circolare nel punto G.3.2.2 delle CNR-DT 207/2008.

$$c_{m}(z_{lat}) = k_{r} \cdot \ln\left(\frac{z_{lat}}{z_{0}}\right) \cdot c_{t} = 0, 22 \cdot \ln\left(\frac{13,5}{0,3}\right) \cdot 1 = 0,837$$

$$v_{m}(z_{lat}) = v_{b} \cdot c_{m}(z_{lat}) = 25 [m/s] \cdot 0,837 = 20,9 [m/s]$$

$$Re = \frac{d_{x} \cdot v_{m}(z_{lat})}{v} = \frac{77 [m] \cdot 20,9 [m/s]}{15 \cdot 10^{-6} [m^{2}/s]} = 10,7 \cdot 10^{7}$$

$$c_{pm} = -1,5$$

$$c_{pb} = -0,8$$

$$\alpha_{m} = 75 [\circ]$$

$$\alpha_{b} = 105 [\circ]$$

$$c_{pe} = c_{peo} \cdot \psi_{\lambda\alpha}$$

Essendo per questa costruzione $h/d \le 5$ il coefficiente di snellezza può essere posto pari a $\psi_{\lambda} = 2/3$.

a	L	Срео	ψλα	сре	pv
[°]	[rad]	_			[KN/m^2]
0			1.000	1.000	0.777
9	0.157	0.912	1.000	0.912	0.709
27	0.471	0.282	1.000	0.282	0.219
45	0.785	-0.636	1.000	-0.636	-0.494
63	1.100	-1.345	1.000	-1.345	-1.045
81	1.414	-1.433	0.984	-1.410	-1.095
90	1.571	-1.150	0.902	-1.038	-0.806
99	1.728	-0.867	0.770	-0.667	-0.518
117	2.042	-0.800	0.667	-0.533	-0.414
135	2.356	-0.800	0.667	-0.533	-0.414
153	2.670	-0.800	0.667	-0.533	-0.414
171	2.985	-0.800	0.667	-0.533	-0.414
180	3.142	-0.800	0.667	-0.533	-0.414
Cpm =	-1.5				
cpb =	-0.8				
am =	75	[°]	1.309	[rad]	
αb =	105	[°]	1.833	[rad]	
ψλ =	0.667				
pv/cpe =	0.777	[KN/m^2]			

Coefficiente di pressione per la copertura

Per la copertura si considerano i coefficienti di pressione calcolati per una copertura cilindrica circolare nel punto G.2.3.6 delle CNR-DT 207/2008.

Vento	in direzi	one x	Vento	in direzio	ne y
dx =	77	[m]	dy =	63	[m]
h =	13.5	[m]	h =	13.5	[m]
h/dx =	0.175		h/dy =	0.214	
f =	5.6	[m]	f =	5.6	[m]
f/dx =	0.073	<u> </u>	f/dy =	0.089	-
			_		
cpe,A(0) =	0.116		cpe,A(0) =	0.142	
cpe,A(0,5) =	-1.064		cpe,A(0,5) =	-1.144	
cpe,A =	-0.297		cpe,A =	-0.409	
cpe,B =	-0.773		cpe,B=	-0.789	
cpe,C=	-0.482		cpe,C=	-0.433	
_					
pv/cpe =	0.891	[KN/m^2]			
_		<u> </u>			
pv,A =	-0.265	[KN/m^2]	pv,A =	-0.365	[KN/m^2]
pv,B =	-0.689	[KN/m^2]	pv,B =	-0.703	[KN/m^2]
pv, C =	-0.429	[KN/m^2]	pv, C =	-0.386	[KN/m^2]

2.2.8 Coefficiente di pressione interna

Con riferimento al punto G.4.3 delle CNR-DT 207/2008, si assume a seconda dei casi:

$$\begin{split} c_{p,i(+)} &= 0, 2 \Rightarrow p_{v,i(+)} = 0,891 \Big[\, KN/m^2 \, \Big] \cdot 0, 2 = 0,179 \Big[\, KN/m^2 \, \Big] \\ c_{p,i(-)} &= -0, 3 \Rightarrow p_{v,i(-)} = 0,891 \Big[\, KN/m^2 \, \Big] \cdot \big(-0,3\big) = -0,268 \Big[\, KN/m^2 \, \Big] \end{split}$$

Questi valori sono più restrittivi rispetto a quanto indicato nelle "Istruzioni per il DM 2008" al punto C3.3.10.1 riguardo la pressione interna per edifici a pianta rettangolare.

2.2.9 Coefficiente di attrito per l'azione tangente

Il coefficiente di attrito per l'azione tangente è da assumersi pari a: $c_f = 0,04$ in base a quanto indicato nella tabella C3.3.I delle "Istruzioni per il DM 2008" per quanto riguarda le superfici ondulate.

La pressione associata all'azione tangenziale del vento è quindi pari a:

- Copertura: $p_{v,tg} = 0.891 [KN/m^2] \cdot 0.04 = 0.036 [KN/m^2]$
- Pareti laterali: $p_{v,tg} = 0.777 \lceil KN/m^2 \rceil \cdot 0.04 = 0.031 \lceil KN/m^2 \rceil$

2.3 Carichi permanenti portati dalla struttura

2.3.1 Carico dovuto al pacchetto di copertura

In base a quanto indicato dallo studio Teco si assume per il pacchetto di copertura un peso di $0.15 \left[\frac{KN}{m^2} \right]$, di cui sono $0.1 \left[\frac{KN}{m^2} \right]$ di isolante e barriera al vapore e $0.05 \left[\frac{KN}{m^2} \right]$ di lamiera.

2.3.2 Carico dovuto agli impianti

Con riferimento allo schema in Figura 12 il carico dovuto agli impianti appesi è considerato pari a: $0.1[KN/m^2]$ sulla parte laterale dell'intradosso (Area di carico 74) e $0.45[KN/m^2]$ nella zona centrale (Area di carico 73) di intradosso che si trova sopra il campo da basket.

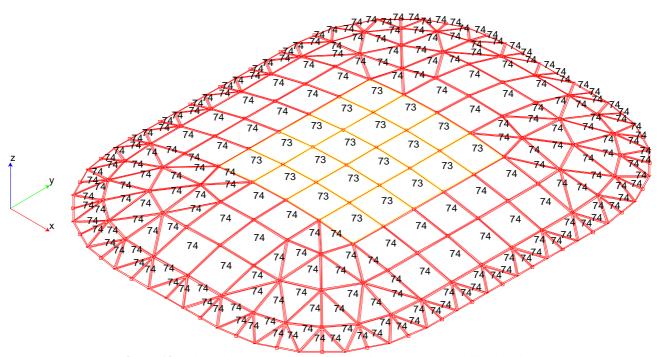


Figura 12: Schema delle aree di carico presenti nell'intradosso della reticolare.

La proiezione in pianta dell'Area 73 è di circa 28 [m] per 25[m], sufficiente quindi a coprire l'area di un campo da basket che misura 28 [m] per 15[m].

2.4 Peso proprio della struttura

2.4.1 Peso dei tubi costituenti la reticolare

Il peso proprio della struttura in acciaio è stato calcolato direttamente dal programma, considerando un peso specifico dell'acciaio pari a $\gamma_{acciaio} = 78,5 \left[\frac{KN}{m^3} \right]$, in accordo con quanto espresso nella tabella 3.1.I delle "Norme tecniche per le costruzioni" del 14 gennaio 2008.

2.4.2 Peso delle unioni delle aste

L'incremento di peso della struttura dovuto alla presenza di unioni a palle è stato assunto pari al 20% e computato automaticamente dei calcoli applicando il carico nei nodi.

2.4.3 Peso dovuto alla lamiera

Come lamiera si è scelta la lamiera grecata dal catalogo della Montana SP 200 si spessore 1[mm]:

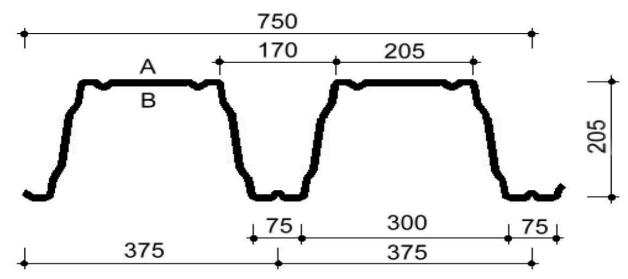


Figura 13: Dimensioni geometriche della sezione della lamiera adottata

Spanny Portée			m	6.25	6.50	6.75	7.00
t	kg/m2		Υ	kN/m2	kN/m2	kN/m2	kN/m2
0.88	13.81		I/150	2.39	2.30	2.22	2.14
			1/300	1.82	1.62	1.44	1.30
1.00	15.70	***************************************	I/150	3.13	3.01	2.83	2.63
			1/300	2.10	1.87	1.67	1.50
1.13	17.74	***************************************	I/150	3.83	3.55	3.29	3.06
			1/300	2.41	2.14	1.91	1.72
1.25	19.63	•	I/150	4.44	4.11	3.81	3.54
			1/300	2.70	2.40	2.15	1.92
1.50	23.55		I/150	5.70	5.27	4.89	4.55
			1/300	3.32	2.95	2.63	2.36

Figura 14: Portata della lamiera dal catalogo della Montana

- Verifica della lamiera per la parte superiore:
- Carico:

$$\underbrace{0.15 \left[\frac{KN}{m^2} \right]}_{\text{perm port}} + \underbrace{1.2 \left[\frac{KN}{m^2} \right]}_{\text{neve}} + \underbrace{0.157 \left[\frac{KN}{m^2} \right]}_{\text{peso proprio lamiera}} =$$

$$= 1.51 \left[\frac{KN}{m^2} \right] \le 1.87 \left[\frac{KN}{m^2} \right]$$

- Luce: 6,5[m]
- Peso proprio della lamiera: $0.157 [KN/m^2]$
- Verifica della lamiera per la parte laterale:

- Carico:

$$\underbrace{1,095 \left[\frac{KN}{m^2} \right]}_{\text{Vento p esterna}} + \underbrace{0,179 \left[\frac{KN}{m^2} \right]}_{\text{Vento p interna}} = 1,274 \left[\frac{KN}{m^2} \right] \le 1,87 \left[\frac{KN}{m^2} \right]$$

- Luce: 6,5[m]

- Peso proprio della lamiera: $0.157 \lceil KN/m^2 \rceil$

2.4.4 Peso degli arcarecci di copertura

• Dimensioni geometriche:

- Lunghezza schema appoggio – appoggio: 6,8[m]

- Larghezza area di influenza: 6,5[m]

• Condizioni di carico:

- Peso proprio: calcolato automaticamente dal software assumendo $\gamma_{acciaio} = 78,5 \lceil KN/m^3 \rceil$.

- Permanenti portati strutturali: $0.157 \lceil KN/m^2 \rceil$ della lamiera grecata.

- Permanenti portati non strutturali: $0.15 \lceil KN/m^2 \rceil$ del pacchetto di copertura.

- Carico della neve: $1,20\lceil KN/m^2 \rceil$.

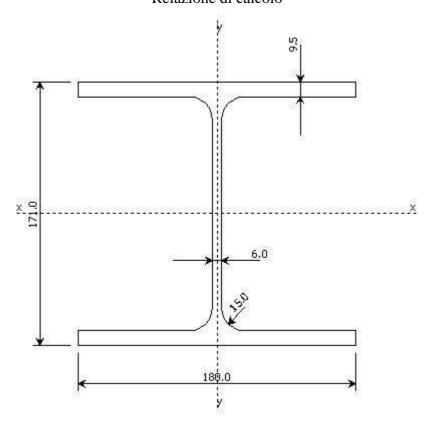
• Arcareccio impiegato:

- Come arcareccio si impiega un HEA 180, il cui peso al metro quadro risulta: $67330[kg]/4430[m^2]=15,2[kg/m^2]=0,152[KN/m^2]$

• Combinazioni di carico considerate:

	pp	perm str	perm port	neve
SLU	1.3	1.3	1.5	1.5
SLE rare	1	1	1	0.75
SLE rare neve	0	0	0	0.75
SLE rare perm	1	1	1	0
SLE freq	1	1	1	0.2
SLE q perm	1	1	1	0

• Verifica di resistenza:


DATI GENERALI

Luce dell'asta : 6.8000 [m] Sezione numero : 1 / HEA 180

Materiale: Acciaio

Tensione di snervamento : 355.0 [MPa] Tensione di rottura : 510.0 [MPa]

DATI INERZIALI PROFILO: HEA 180

Area	4533 [mm²]	A.Traz	4533 [mm²]	L collegamento	0 [mm]
Jx	25143069 [mm^4]	ix	74.5 [mm]		
Wx	294071 [mm³]	Zx	325420 [mm³]		
Jy	9246803 [mm^4]	iy	45.2 [mm]		
Wy	102742 [mm³]	Zy	156563 [mm³]		
Jt	147982 [mm^4]				
Cw	60210867188 [mm^6]				

Curva di instabilità piano 1-2 : b Curva di instabilità piano 1-3 : c

Doppio T

B 180.0 [mm]

H 171.0 [mm]

tf 9.5 [mm]

tw 6.0 [mm]

r 15.0 [mm]

 $\beta 12:1.00$

 $\beta 13:1.00$

Materiale Acciaio

fy: 355.0 [MPa] fu: 510.0 [MPa] Epsilon: 0.814

Coefficenti di sicurezza:

 $\gamma Mo \ 1.05 \\ \gamma M1 : 1.05$

 γ M2: 1.25

Classificazione generale della sezione:

Compressione: 2 Flessione Mx: 2 Flessione My: 2

VERIFICA DI RESISTENZA

Ms/Mr Max nella Combinazione 1. All'Ascissa 3.4000 [m]

Caratteristiche inerziali della sezione trasversale:

Classe sezione : 2 Area : 4533 [mm²] Wx : 325420 [mm³] Wy : 156563 [mm³]

Azione Sollecitante		Sd/Sr
Sforzo Normale	0.000 [kN]	0.00
Momento Flettente Mx	-44.548 [kNm]	0.40
Momento Flettente My	-0.000 [kNm]	0.00
Taglio Ty	0.000 [kN]	0.00
Ratio Massimo riscontrato		0.40VERIFICATA

- N.B.

L'area resistente a taglio è pari a 1455 [mm²]

VERIFICA DI INSTABILITA DA SFORZO NORMALE

L'asta risulta NON COMPRESSA.

VERIFICA DI INSTABILITÀ FLESSOTORSIONALE (SVERGOLAMENTO)

Dati di Verifica

Luce dell'asta libera di svergolare : 6.8000 [m]

Fattore di lunghezza effettiva k: 1.00

Fattore di ritegno torsionale d'estremità kw : 1.00

Eccentricità fra il centro di taglio ed il

punto di applicazione dei carichi esterni zg: 85.5 [mm]

Fattore zj : 0.0 [mm]

Andamento del diagramma del momento flettente NON Lineare	
Coefficienti di interazione carico vincoli	
C1	1.132
C2	0.459
C3	0.525
Momento critico d'instabilitàMcr	73.099 [kNm]
Snellezza adimensionale	1.257
Curva di instabilità	a
Coefficiente di riduzione per instabilitàXLT	0.495
Sezione in Classe	2

Momento massimo agente nella combinazione 1	-44.548 [kNm]
Msd/Mbrd	0.818VERIFICATA

VERIFICA DI INSTABILITA A PRESSO-FLESSIONE

L'asta risulta NON COMPRESSA.

Verifica di deformazione:

Con riferimento al punto 4.2.4.2 del DM 2008 nel caso preso in esame si ha che lo spostamento verso il basso nella mezzeria dell'arcareccio è pari a:

SLE rare perm
$$\rightarrow \delta_1 = 7.1 [\text{mm}]$$

SLE rare neve
$$\rightarrow \delta_2 = 15,4 \text{ [mm]} \le 6800 \text{ [mm]} / 250 = 27,2 \text{ [mm]}$$

Essendo la contromonta nulla si ha che $\delta_c = 0$, per cui:

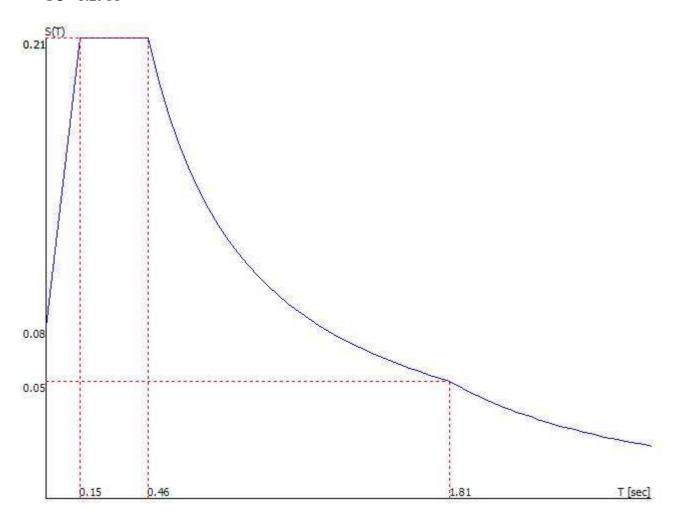
$$\delta_{\text{max}} = \delta_1 + \delta_2 = 7.1 \text{[mm]} + 15.4 \text{[mm]} = 22.5 \text{[mm]} \le 6800 \text{[mm]} / 200 = 34 \text{[mm]}$$

2.5 Azione termica

2.5.1 Valore dello sbalzo termico

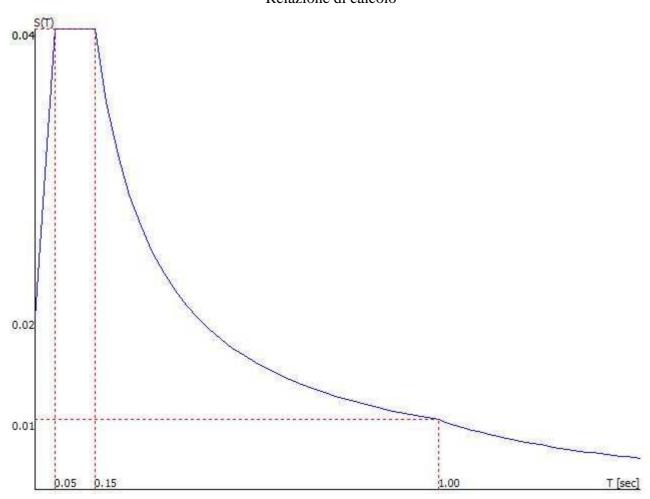
Per struttura in acciaio esposta si assume da Testo Unico (cap.3.5.5, tabella 3.5.II) un valore dello sbalzo termico pari a: $\Delta T_u = \pm 25 [^{\circ}C]$.

2.6 Azione sismica


2.6.1 Parametri di calcolo Analisi Dinamica

- - Spettro in accordo con TU 2008
- Milano MI Longitudine 9.1422 Latitudine 45.4826
- Tipo di Terreno C
- Coefficiente di amplificazione topografica (ST) 1.0000
- Vita nominale della costruzione (VN) 50.0 anni
- Classe d'uso III° coefficiente CU 1.5
- Classe di duttilità impostata Bassa
- Fattore di struttura massimo go per sisma orizzontale 1.00
- Fattore di duttilita KR per sisma orizzontale 1.00
- Fattore riduttivo regolarità in altezza KR 1.00
- Fattore riduttivo per la presenza di setti KW 1.00
- Fattore di struttura q per sisma orizzontale 1.00
- Fattore di struttura q per sisma verticale 1.00
- Smorzamento Viscoso (0.05 = 5%) 0.05

2.6.2 TU 2008 SLV H


- Probabilità di superamento (PVR) 10.0 e periodo di ritorno (TR) 712 (anni)
- Ss 1.5
- TB 0.15 [sec]
- TC 0.46 [sec]
- TD 1.81 [sec]
- ag/g 0.0527
- Fo 2.6957

• TC* 0.2911

2.6.3 TU 2008 SLV V

- Probabilità di superamento (PVR) 10.0 e periodo di ritorno (TR) 712 (anni)
- Ss 1.5
- TB 0.05 [sec]
- TC 0.15 [sec]
- TD 1.00 [sec]
- ag/g 0.0527
- Fv 0.8353
- TC* 0.2911

2.6.4 Fattori di partecipazione per il calcolo delle masse:

Condizione	Commento	Fattore di Partecipazione
1	pp x 1.2	1.000000
2	perm str	1.000000
3	perm port	1.000000
4	neve zona 1	0.000000
5	neve zona 2	0.000000
6	neve zona 3	0.000000
7	neve zona 4	0.000000
8	vento normale X+	0.000000
9	vento normale X-	0.000000
10	vento normale Y+	0.000000
11	vento normale Y-	0.000000
12	vento tangente X+	0.000000
13	vento tangente X-	0.000000
14	vento tangente Y+	0.000000
15	vento tangente Y-	0.000000

16	vento cpi+	0.000000
17	vento cpi-	0.000000
18	DT+	0.000000
19	DT-	0.000000

2.6.5 Direzioni d'ingresso del Sisma

- SLV Direzione 1 Angolo in pianta 0.00 [°]
- SLV Direzione 2 Angolo in pianta 90.00 [°]
- SLV Direzione 3 Sisma Verticale

Analisi Modale via Vettori di Ritz

Percentuale della massa di piano utilizzata per la valutazione delle azioni dovute ad eccentricita' addizionali del centro di massa 100.0%

2.7 Combinazione dei carichi

2.7.1 Schematizzazione dei carichi applicati

1) Peso proprio: carico applicato distribuito alle aste e ai nodi applicato il 20% del peso delle aste.

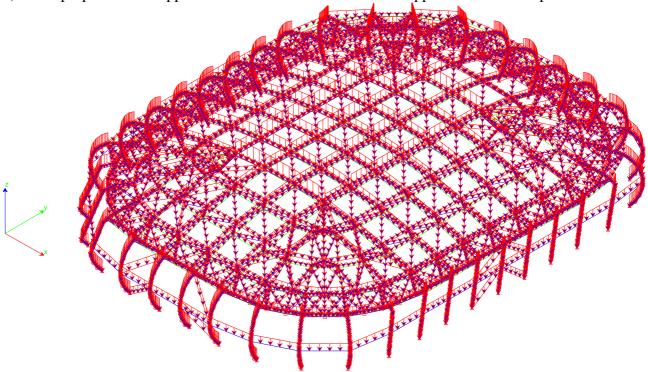


Figura 15: Schema del carico dovuto al peso proprio delle aste

Figura 16: Schema del carico dovuto al peso proprio dei nodi assunto pari al 20% del peso delle aste

2) Permanenti portati strutturali

I carichi permanenti strutturali sono applicati all'estradosso della copertura sui nodi della reticolare struttura e nella zona laterale sulle travi curve.

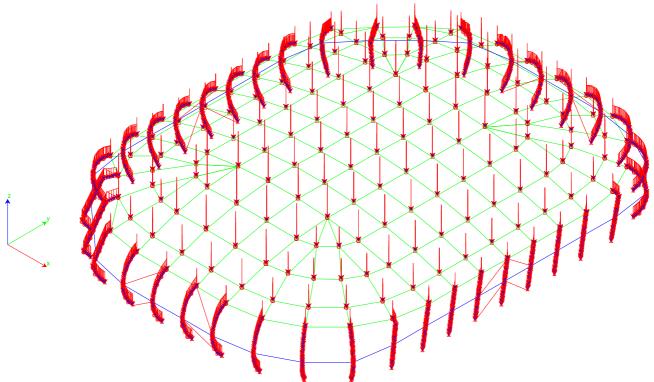


Figura 17: Schema dei carichi permanenti portati strutturali

3) Permanenti portati non strutturali

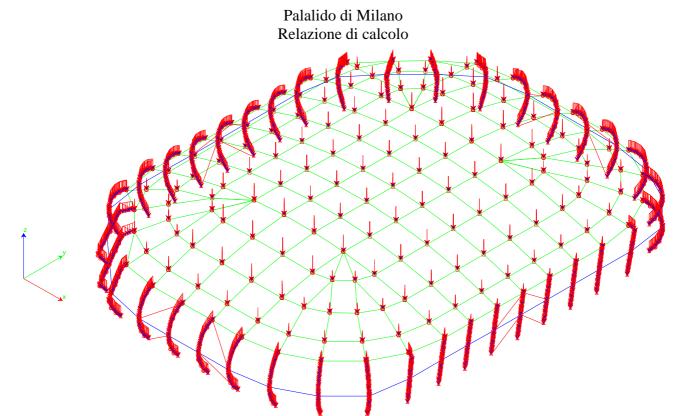


Figura 18: Schema dei carichi permanenti portati non strutturali applicati all'estradosso della copertura e sulle travi laterali

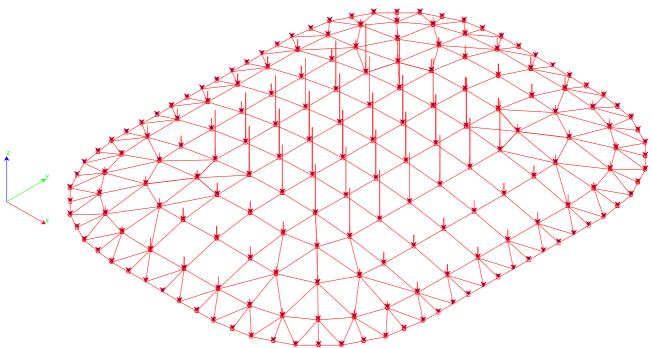


Figura 19: Schema dei carichi permanenti portati non strutturali applicati all'intradosso della copertura

4) Neve zona 1

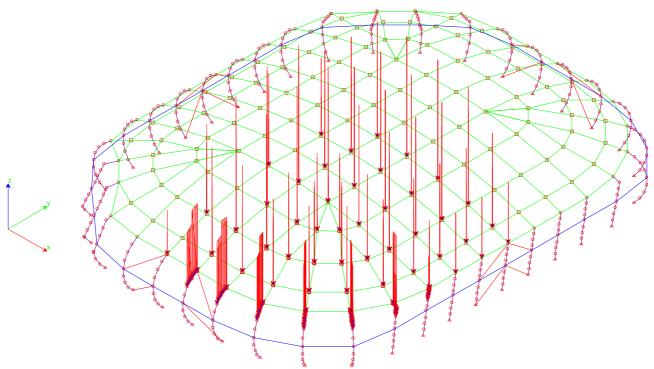


Figura 20: Schema del carico della neve applicato alla zona 1 dell'estradosso

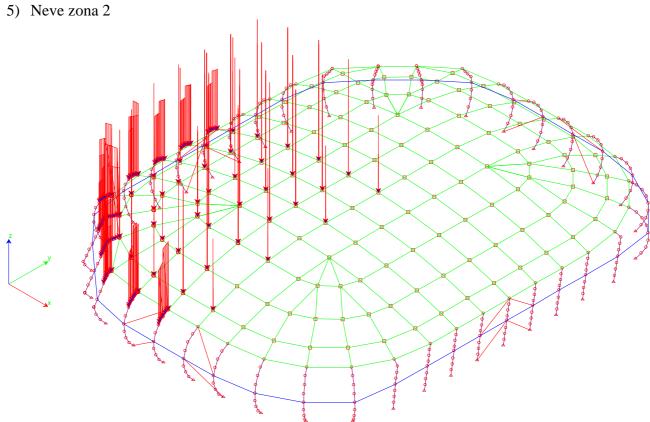


Figura 21: Schema del carico della neve applicato alla zona 2 dell'estradosso

6) Neve zona 3

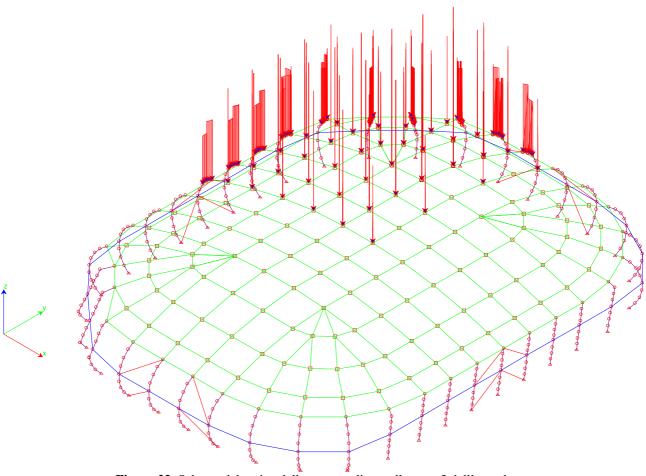


Figura 22: Schema del carico della neve applicato alla zona 3 dell'estradosso

7) Neve zona 4

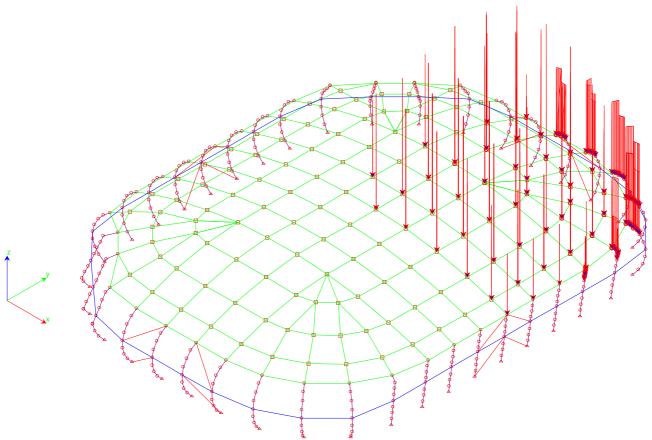


Figura 23: Schema del carico della neve applicato alla zona 4 dell'estradosso

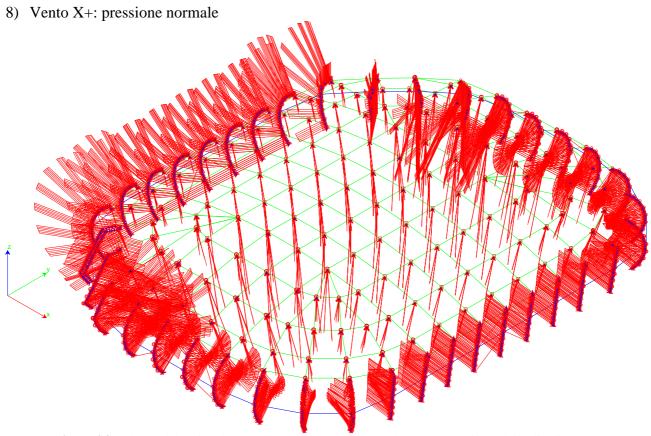


Figura 24: Schema del carico dovuto alla pressione normale del vento proveniente dalla direzione X+

9) Vento X-: pressione normale

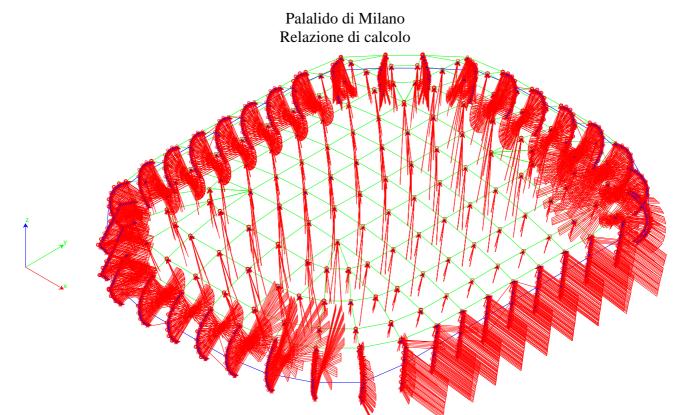


Figura 25: Schema del carico dovuto alla pressione normale del vento proveniente dalla direzione X-

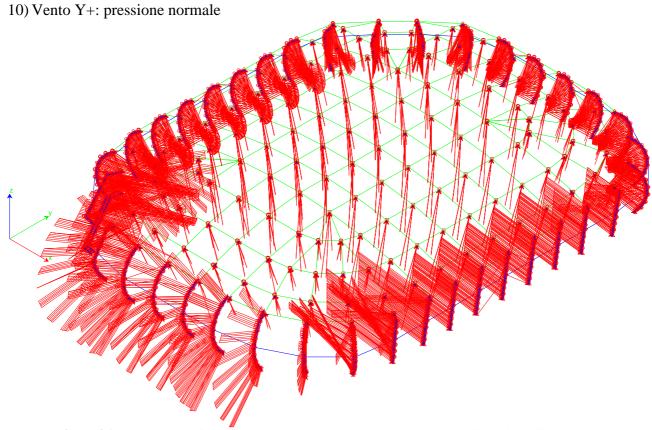


Figura 26: Schema del carico dovuto alla pressione normale del vento proveniente dalla direzione Y+

11) Vento Y-: pressione normale

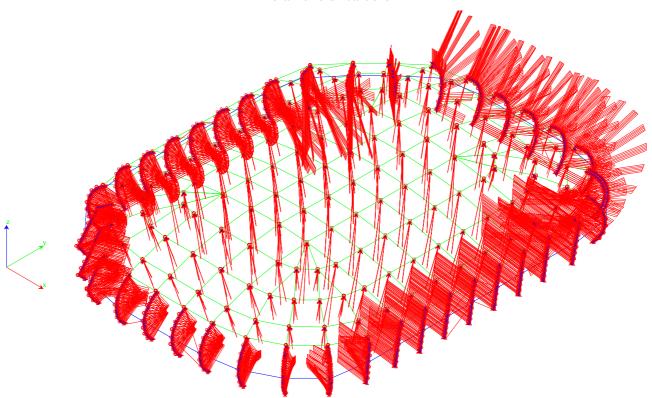


Figura 27: Schema del carico dovuto alla pressione normale del vento proveniente dalla direzione Y-

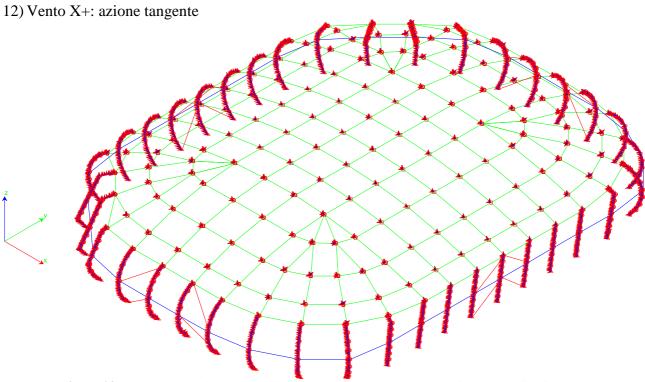


Figura 28: Schema del carico dovuto all'azione tangente del vento proveniente dalla direzione X+

13) Vento X-: azione tangente

Figura 29: Schema del carico dovuto all'azione tangente del vento proveniente dalla direzione X-

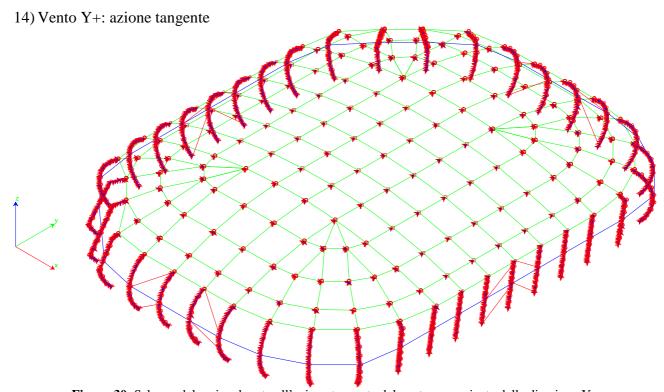


Figura 30: Schema del carico dovuto all'azione tangente del vento proveniente dalla direzione Y+

15) Vento Y-: azione tangente

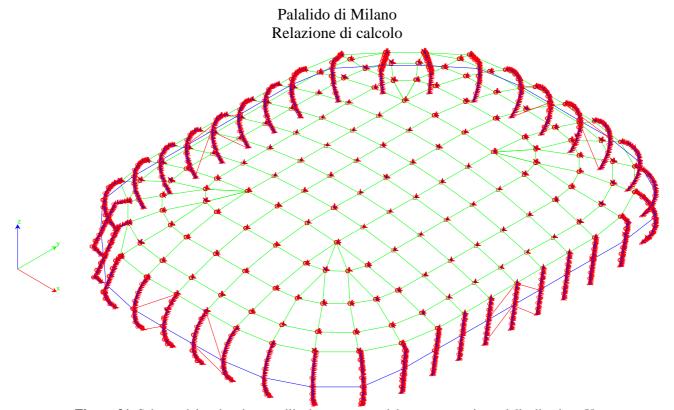


Figura 31: Schema del carico dovuto all'azione tangente del vento proveniente dalla direzione Y-

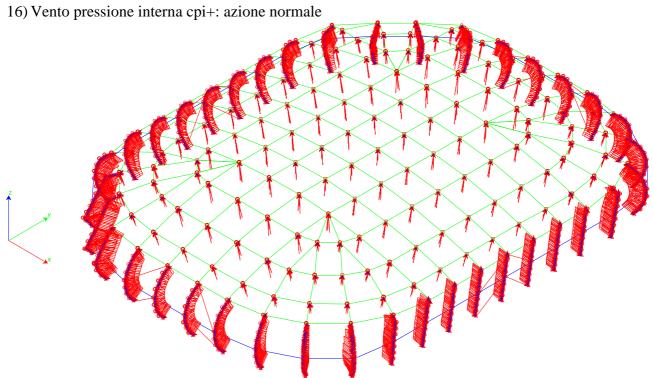


Figura 32: Schema del carico dovuto alla pressione interna positiva del vento

17) Vento pressione interna cpi-: azione normale

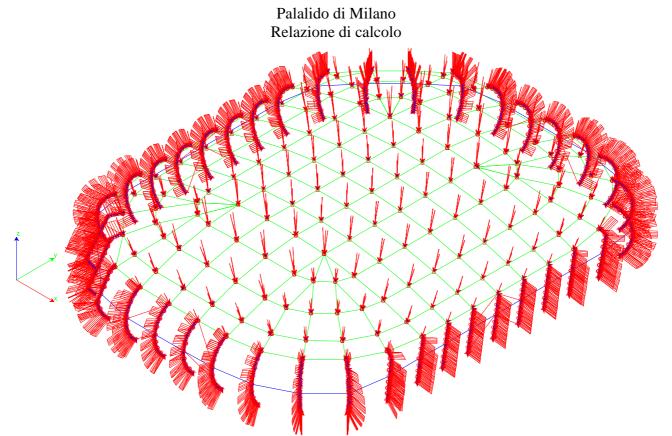
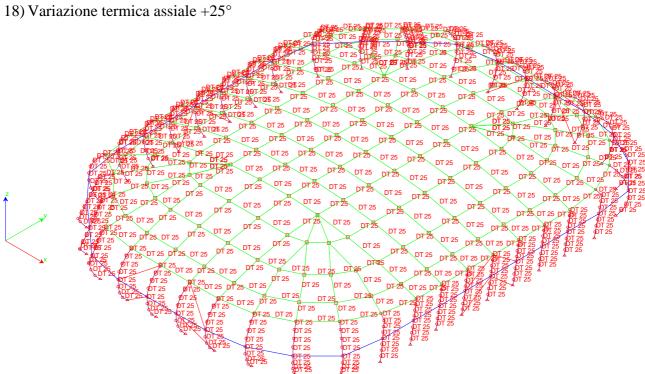
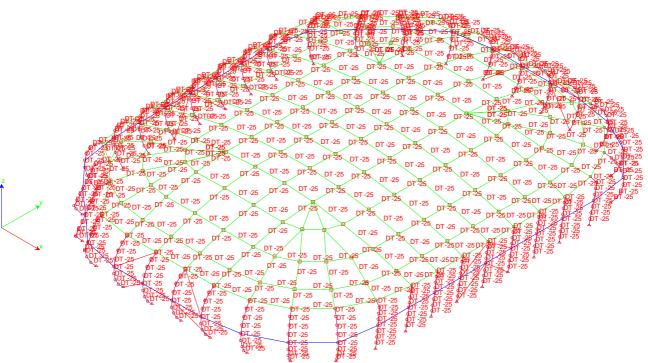




Figura 33: Schema del carico dovuto alla pressione interna negativa del vento

Figura 34: Schema della variazione termica assiale di +25°

19) Variazione termica assiale -25°

Figura 35: Schema della variazione termica assiale di -25°

2.7.2 Combinazioni SLU

SLU																			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Comb	рр	p str	p port	n 1	n_2	n_3	n 4	vX_+	vX	vY_+	vY	vtX +	vtX -	vtY +	vtY -	vcpi+	vcpi-	DT+	DT-
1	1.3	1.3	1.5	1.5	1.5	1.5	1.5	0	0	0	0	0	0	0	0	0	0	0.9	0
2	1.3	1.3	1.5	1.5	1.5	0	0	0	0	0	0	0	0	0	0	0	0	0.9	0
3	1.3	1.3	1.5	0	0	1.5	1.5	0	0	0	0	0	0	0	0	0	0	0.9	0
4	1.3	1.3	1.5	0	1.5	1.5	0	0	0	0	0	0	0	0	0	0	0	0.9	0
5	1.3	1.3	1.5	1.5	0	0	1.5	0	0	0	0	0	0	0	0	0	0	0.9	0
6	1.3	1.3	1.5	1.5	0	1.5	0	0	0	0	0	0	0	0	0	0	0	0.9	0
7	1.3	1.3	1.5	0	1.5	0	1.5	0	0	0	0	0	0	0	0	0	0	0.9	0
8	1.3	1.3	1.5	1.5	1.5	1.5	1.5	0	0	0	0	0	0	0	0	0	0	0	0.9
9	1.3	1.3	1.5	1.5	1.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.9
10	1.3	1.3	1.5	0	0	1.5	1.5	0	0	0	0	0	0	0	0	0	0	0	0.9
11	1.3	1.3	1.5	0	1.5	1.5	0	0	0	0	0	0	0	0	0	0	0	0	0.9
12	1.3	1.3	1.5	1.5	0	0	1.5	0	0	0	0	0	0	0	0	0	0	0	0.9
13	1.3	1.3	1.5	1.5	0	1.5	0	0	0	0	0	0	0	0	0	0	0	0	0.9
14	1.3	1.3	1.5	0	1.5	0	1.5	0	0	0	0	0	0	0	0	0	0	0	0.9
15	1	1	0	0	0	0	0	1.5	0	0	0	1.5	0	0	0	1.5	0	0.9	0
16	1	1	0	0	0	0	0	0	1.5	0	0	0	1.5	0	0	1.5	0	0.9	0
17	1	1	0	0	0	0	0	0	0	1.5	0	0	0	1.5	0	1.5	0	0.9	0
18	1	1	0	0	0	0	0	0	0	0	1.5	0	0	0	1.5	1.5	0	0.9	0
19	1	1	0	0	0	0	0	1.5	0	0	0	1.5	0	0	0	1.5	0	0	0.9
20	1	1	0	0	0	0	0	0	1.5	0	0	0	1.5	0	0	1.5	0	0	0.9
21	1	1	0	0	0	0	0	0	0	1.5	0	0	0	1.5	0	1.5	0	0	0.9
22	1	1	0	0	0	0	0	0	0	0	1.5	0	0	0	1.5	1.5	0	0	0.9
23	1.3	1.3	1.5	0.75	0.75	0.75	0.75	1.5	0	0	0	1.5	0	0	0	0	1.5	0.9	0
24	1.3	1.3	1.5	0.75	0.75	0.75	0.75	0	1.5	0	0	0	1.5	0	0	0	1.5	0.9	0
25	1.3	1.3	1.5	0.75	0.75	0.75	0.75	0	0	1.5	0	0	0	1.5	0	0	1.5	0.9	0
26	1.3	1.3	1.5	0.75	0.75	0.75	0.75	0	0	0	1.5	0	0	0	1.5	0	1.5	0.9	0
27	1.3	1.3	1.5	0.75	0.75	0.75	0.75	1.5	0	0	0	1.5	0	0	0	0	1.5	0	0.9
28	1.3	1.3	1.5	0.75	0.75	0.75	0.75	0	1.5	0	0	0	1.5	0	0	0	1.5	0	0.9
29	1.3	1.3	1.5	0.75	0.75	0.75	0.75	0	0	1.5	0	0	0	1.5	0	0	1.5	0	0.9
30	1.3	1.3	1.5	0.75	0.75	0.75	0.75	0	0	0	1.5	0	0	0	1.5	0	1.5	0	0.9
31	1.3	1.3	1.5	0.75	0.75	0.75	0.75	0	0	0	0	0	0	0	0	0	0	1.5	0
32	1	1	0	0	0	0	0	0.9	0	0	0	0.9	0	0	0	0.9	0	1.5	0
33	1	1	0	0	0	0	0	0	0.9	0	0	0	0.9	0	0	0.9	0	1.5	0
34	1	1	0	0	0	0	0	0	0	0.9	0	0	0	0.9	0	0.9	0	1.5	0
35	1	1	0	0	0	0	0	0	0	0	0.9	0	0	0	0.9	0.9	0	1.5	0
36	1.3	1.3	1.5	0.75	0.75	0.75	0.75	0	0	0	0	0	0	0	0	0	0	0	1.5
37	1	1	0	0	0	0	0	0.9	0	0	0	0.9	0	0	0	0.9	0	0	1.5
38	1	1	0	0	0	0	0	0	0.9	0	0	0	0.9	0	0	0.9	0	0	1.5
39	1	1	0	0	0	0	0	0	0	0.9	0	0	0	0.9	0	0.9	0	0	1.5
40	1	1	0	0	0	0	0	0	0	0	0.9	0	0	0	0.9	0.9	0	0	1.5
41	1.3	1.3	1.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

2.7.3 Combinazioni SLE rara

SLE ra	ıra																		
JLL 16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Comb	pp	_	p port		n_2	n_3	n_4	vX_+	vX	vY_+	vY				vtY			DT+	DT-
1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0.6	0
2	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.6	0
3	1	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0.6	0
4	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0.6	0
5	1	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0.6	0
6	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0.6	0
7	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0.6	0
8	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0.6
9	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0.6
10	1	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0.6
11	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.6
12	1	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0.6
13	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0.6
14	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0.6
15	1	1	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0.6	0
16	1	1	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0.6	0
17	1	1	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0.6	0
18	1	1	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0.6	0
19	1	1	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0.6
20	1	1	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0.6
21	1	1	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0.6
22	1	1	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0.6
23	1	1	1	0.5	0.5	0.5	0.5	1	0	0	0	1	0	0	0	0	1	0.6	0
24	1	1	1	0.5	0.5	0.5	0.5	0	1	0	0	0	1	0	0	0	1	0.6	0
25	1	1	1	0.5	0.5	0.5	0.5	0	0	1	0	0	0	1	0	0	1	0.6	0
26	1	1	1	0.5	0.5	0.5	0.5	0	0	0	1	0	0	0	1	0	1	0.6	0
27	1	1	1	0.5	0.5	0.5	0.5	1	0	0	0	1	0	0	0	0	1	0	0.6
28	1	1	1	0.5	0.5	0.5	0.5	0	1	0	0	0	1	0	0	0	1	0	0.6
29	1	1	1	0.5	0.5	0.5	0.5	0	0	1	0	0	0	1	0	0	1	0	0.6
30	1	1	1	0.5	0.5	0.5	0.5	0	0	0	1	0	0	0	1	0	1	0	0.6
31	1	1	1	0.5	0.5	0.5	0.5	0	0	0	0	0	0	0	0	0	0	1	0
32	1	1	0	0	0	0	0	0.6	0	0	0	0.6	0	0	0	0.6	0	1	0
33	1	1	0	0	0	0	0	0	0.6	0	0	0	0.6	0	0	0.6	0	1	0
34	1	1	0	0	0	0	0	0	0	0.6	0	0	0	0.6	0	0.6	0	1	0
35	1	1	0	0	0	0	0	0	0	0	0.6	0	0	0	0.6	0.6	0	1	0
36	1	1	1	0.5	0.5	0.5	0.5	0	0	0	0	0	0	0	0	0	0	0	1
37	1	1	0	0	0	0	0	0.6	0	0	0	0.6	0	0	0	0.6	0	0	1
38	1	1	0	0	0	0	0	0	0.6	0	0	0	0.6	0	0	0.6	0	0	1
39	1	1	0	0	0	0	0	0	0	0.6	0	0	0	0.6	0	0.6	0	0	1
40	1	1	0	0	0	0	0	0	0	0	0.6	0	0	0	0.6	0.6	0	0	1

2.7.4 Combinazioni SLE frequente

SLE fr	eq																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Comb	рр	p str	p port	n_1	n_2	n_3	n_4	vX_+	vX	vY_+	vY	vtX_+	vtX	vtY_+	vtY	vcpi+	vcpi-	DT+	DT-
1	1	1	1	0.2	0.2	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	0	0	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	0	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	0.2	0	0	0.2	0	0	0	0	0	0	0	0	0	0	0	0
6	1	1	1	0.2	0	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0
7	1	1	1	0	0.2	0	0.2	0	0	0	0	0	0	0	0	0	0	0	0
8	1	1	1	0.2	0.2	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0
9	1	1	1	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	1	1	1	0	0	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0
11	1	1	1	0	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0
12	1	1	1	0.2	0	0	0.2	0	0	0	0	0	0	0	0	0	0	0	0
13	1	1	1	0.2	0	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0
14	1	1	1	0	0.2	0	0.2	0	0	0	0	0	0	0	0	0	0	0	0
15	1	1	0	0	0	0	0	0.2	0	0	0	0.2	0	0	0	0.2	0	0	0
16	1	1	0	0	0	0	0	0	0.2	0	0	0	0.2	0	0	0.2	0	0	0
17	1	1	0	0	0	0	0	0	0	0.2	0	0	0	0.2	0	0.2	0	0	0
18	1	1	0	0	0	0	0	0	0	0	0.2	0	0	0	0.2	0.2	0	0	0
19	1	1	0	0	0	0	0	0.2	0	0	0	0.2	0	0	0	0.2	0	0	0
20	1	1	0	0	0	0	0	0	0.2	0	0	0	0.2	0	0	0.2	0	0	0
21	1	1	0	0	0	0	0	0	0	0.2	0	0	0	0.2	0	0.2	0	0	0
22	1	1	0	0	0	0	0	0	0	0	0.2	0	0	0	0.2	0.2	0	0	0
23	1	1	1	0	0	0	0	0.2	0	0	0	0.2	0	0	0	0	0.2	0	0
24	1	1	1	0	0	0	0	0	0.2	0	0	0	0.2	0	0	0	0.2	0	0
25	1	1	1	0	0	0	0	0	0	0.2	0	0	0	0.2	0	0	0.2	0	0
26	1	1	1	0	0	0	0	0	0	0	0.2	0	0	0	0.2	0	0.2	0	0
27	1	1	1	0	0	0	0	0.2	0	0	0	0.2	0	0	0	0	0.2	0	0
28	1	1	1	0	0	0	0	0	0.2	0	0	0	0.2	0	0	0	0.2	0	0
29	1	1	1	0	0	0	0	0	0	0.2	0	0	0	0.2	0	0	0.2	0	0
30	1	1	1	0	0	0	0	0	0	0	0.2	0	0	0	0.2	0	0.2	0	0
31	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0
32	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0
33	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0
34	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0
35	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0
36	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5
37	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5
38	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5
39	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5
40	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5

2.7.5 Combinazioni SLE quasi permanente

SLE q	perm																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Comb	рр	p str	p port	n_1	n_2	n_3	n_4	vX_+	vX	vY_+	vY	vtX_+	vtX	vtY_+	vtY	vcpi+	vcpi-	DT+	DT-
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

2.7.6 Combinazioni Sismiche SLV

SLV																						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19			
Comb	pp	p str	p port	n_1	n_2	n_3	n_4	vX_+	vX	vY_+	vY	vtX_+	vtX	vtY_+	vtY	vcpi+	vcpi-	DT+	DT-	Sisma X	Sisma Y	Sisma Z
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.333	-0.333
2	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-0.333	-0.333
3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.333	0.333
4	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-0.333	0.333
5	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0.333	-0.333
6	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	-0.333	-0.333
7	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0.333	0.333
8	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	-0.333	0.333
9	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.333	1	-0.333
10	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.333	-1	-0.333
11	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.333	1	0.333
12	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.333	-1	0.333
13	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0.333	1	-0.333
14	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0.333	-1	-0.333
15	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0.333	1	0.333
16	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0.333	-1	0.333
17	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.333	0.333	-1
18	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.333	-0.333	-1
19	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.333	0.333	1
20	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.333	-0.333	1
21	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0.333	0.333	-1
22	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0.333	-0.333	-1
23	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0.333	0.333	1
24	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0.333	-0.333	1

2.7.7 Combinazioni non fattorizzate

Non fa	ttoriz	zate																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Comb	pp	p str	p port	n_1	n_2	n_3	n_4	vX_+	vX	vY_+	vY	vtX_+	vtX	vtY_+	vtY	vcpi+	vcpi-	DT+	DT-
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

3 RACCOLTA DEI RISULTATI

3.1 Reazione dei vincoli

3.1.1 Combinazioni non fattorizzate

Nodo	Comb.	Rx	Ry	Rz	Mx	Му	Mz
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
1	1	0	-3.615	74.508	0	0	0
	2	0	-2.749	57.836	0	0	0
	3	0	-3.715	55.497	0	0	0
	4	0	19.363	4.587	0	0	0
	5	0	-11.314	75.728	0	0	0
	6	0	4.106	76.054	0	0	0
	7	0	-23.408	4.568	0	0	0
	8	0	2.22	-11.237	0	0	0
	9	0	5.268	-93.526	0	0	0
	10	0	-92.997	-111.58	0	0	0
	11	0	97.379	-112.022	0	0	0
	12	0	0.19	1.727	0	0	0
	13	0	-0.19	-1.727	0	0	0
	14	0	-107.028	0.074	0	0	0
	15	0	107.028	-0.074	0	0	0
	16	0	0.666	-27.416	0	0	0
	17	0	-0.999	41.124	0	0	0
	18	0	17.197	11.496	0	0	0
	19	0	-17.197	-11.496	0	0	0
2		0	0	49.27	0	0	0
	2	0	0	41.613	0	0	0
	3	0	0	41.004	0	0	0
	4	0	0	6.621	0	0	0
	5	0	0	27.212	0	0	0
	6	0	0	104.96	0	0	0
	7	0	0	8.465	0	0	0
	8	0	0	-56.186	0	0	0
	9	0	0	-56.706	0	0	0
	10	0	0	-69.76	0	0	0
	11	0	0	-76.646	0	0	0
	12	0	0		0	0	
	13	0	0	-0.377	0	0	0
				0.377	0		
	14	0	0	0.979		0	0
	15	0	0	-0.979	0	0	0
	16	0	0	-19.873	0	0	0
	17	0	0	29.809	0	0	0
	18	0	0	-6.153	0	0	0
	19	0	0	6.153	0	0	0
3		0	0	68.98	0	0	0
	2	0	0	59.133	0	0	0
	3	0	0	59.445	0	0	0
	4	0	0	12.182	0	0	0
	5	0	0	24.057	0	0	0
	6	0	0	147.74	0	0	0
	7	0	0	17.096	0	0	0
	8	0	0	-62.781	0	0	0
	9	0	0	-88.659	0	0	0

	10	0	0	-103.057	0	0	0
	11	0	0	-110.97	0	0	0
	12	0	0	-0.107	0	0	0
	13	0	0	0.107	0	0	0
	14	0	0	2.972	0	0	0
	15	0	0	-2.972	0	0	0
	16	0	0	-28.697	0	0	0
	17	0	0	43.046	0	0	0
	18	0	0	-0.901	0	0	0
	19	0	0	0.901	0	0	0
4	1	0	0	46.3	0	0	0
4	2	0	0	40.537	0	0	0
	3	0	0	37.404	0	0	0
	4	0	0	4.026	0	0	0
	5	0	0	4.020	0	0	0
	6	0	0		0		
				107.491		0	0
	7	0	0	7.738	0	0	0
	8	0	0	-27.181	0	0	0
	9	0	0	-50.409	0	0	0
	10	0	0	-57.425	0	0	0
	11	0	0	-64.843	0	0	0
	12	0	0	-0.193	0	0	0
	13	0	0	0.193	0	0	0
	14	0	0	1.435	0	0	0
	15	0	0	-1.435	0	0	0
	16	0	0	-17.593	0	0	0
	17	0	0	26.39	0	0	0
	18	0	0	0.026	0	0	0
	19	0	0	-0.026	0	0	0
5	1	0	0	50	0	0	0
	2	0	0	42.526	0	0	0
	3	0	0	39.619	0	0	0
	4	0	0	4.954	0	0	0
	5	0	0	5.816	0	0	0
	6	0	0	105.372	0	0	0
	7	0	0	6.744	0	0	0
	8	0	0	-28.297	0	0	0
	9	0	0	-48.078		0	0
	10	0	0	-50.621	0	0	0
	11	0	0	-63.931	0	0	0
	12	0	0	-0.512	0	0	0
	13	0	0	0.512	0	0	0
	14	0	0	0.947	0	0	0
	15	0	0	-0.947	0	0	0
	16	0	0	-17.993	0	0	0
	17	0	0	26.99	0	0	0
	18	0	0	0.127	0	0	0
	19	0	0	-0.127	0	0	0
6	1	0	0	54.958	0	0	0
	2	0	0	43.119		0	0
	3	0	0	43.893		0	0
	4	0	0	9.509	0	0	0
	5	0	0	9.401	0	0	0
	6	0	0	98.41	0	0	0

	7	0	0	20.58	0	0	0
	8	0	0	-58.524	0	0	0
	9	0	0	-56.524 -56.178	0	0	0
	10	0	0	-56.702	0		
						0	0
	11	0	0	-64.234		0	0
	12	0	0	-2.003		0	0
	13	0	0	2.003		0	0
	14	0	0	1.397	0	0	0
	15	0	0	-1.397	0	0	0
	16	0	0	-20.026		0	0
	17	0	0	30.039	0	0	0
	18	0	0	-0.854	0	0	0
	19	0	0	0.854	0	0	0
7	1	0	0	55.358		0	0
	2	0	0	43.696		0	0
	3	0	0	44.647	0	0	0
	4	0	0	10.156		0	0
	5	0	0	11.508		0	0
	6	0	0	98.703	0	0	0
	7	0	0	19.584	0	0	0
	8	0	0	-66.951	0	0	0
	9	0	0	-57.86	0	0	0
	10	0	0	-57.565	0	0	0
	11	0	0	-59.893	0	0	0
	12	0	0	-2.252	0	0	0
	13	0	0	2.252	0	0	0
	14	0	0	1.361	0	0	0
	15	0	0	-1.361	0	0	0
	16	0	0	-20.271	0	0	0
	17	0	0	30.407	0	0	0
	18	0	0	-0.894	0	0	0
	19	0	0	0.894	0	0	0
8	1	0	0	51.52	0	0	0
	2	0	0	44.32		0	0
	3	0	0	40.878		0	0
	4	0	0	5.06		0	0
	5	0	0	4.223		0	0
	6	0	0	104.984		0	0
	7	0	0	14.686		0	0
	8	0	0	-74.019	0	0	0
	9	0	0	-56.468		0	0
	10	0	0	-49.521	0	0	0
	11	0	0	-36.957	0	0	0
	12	0	0	-2.389		0	0
	13	0	0	2.389		0	0
	14	0	0	0.416		0	0
	15	0	0	-0.416		0	0
	16						
		0	0	-18.824		0	0
	17	0	0	28.236		0	0
	18	0	0	-0.346		0	0
_	19	0	0	0.346		0	0
9	1	0	0	51.274		0	0
	2	0	0	43.847	0	0	0
	3	0	0	40.994	0	0	0

	4	0	0	7.784	0	0	0
	5	0	0	8.258	0	0	0
	6	0	0	110.556	0	0	0
	7	0	0	21.582	0	0	0
	8	0	0	-72.807	0	0	0
	9	0	0	-63.24	0	0	0
	10	0	0	-55.643		0	0
	11	0	0	-66.163	0	0	0
	12	0	0	-1.136	0	0	0
	13	0	0	1.136	0	0	0
	14	0	0	1.558	0		
	15	0	0	-1.558	0	0	0
	16		0		0	0	0
	17	0	0	-19.871		0	0
		0		29.807	0	0	0
	18	0	0	-3.668	0	0	0
40	19	0	0	3.668		0	0
10	1	0	0	75.166		0	0
	2	0	0	62.729	0	0	0
	3	0	0	58.917	0	0	0
	4	0	0	7.072	0	0	0
	5	0	0	8.989	0	0	0
	6	0	0	114.409	0	0	0
	7	0	0	60.389	0	0	0
	8	0	0	-135.233	0	0	0
	9	0	0	-96.628	0	0	0
	10	0	0	-77.226	0	0	0
	11	0	0	-36.266	0	0	0
	12	0	0	-11.27	0	0	0
	13	0	0	11.27	0	0	0
	14	0	0	-1.343	0	0	0
	15	0	0	1.343	0	0	0
	16	0	0	-28.594	0	0	0
	17	0	0	42.892	0	0	0
	18	0	0	1.851	0	0	0
	19	0	0	-1.851	0	0	0
11	1	0	0	75.161	0	0	0
	2	0	0	63.374	0	0	0
	3	0	0	59.533	0	0	0
	4	0	0	9.691	0	0	0
	5	0	0	7.581	0	0	0
	6	0	0	63.025	0	0	0
	7	0	0	116.996		0	0
	8	0	0	-106		0	0
	9	0	0	-139.256		0	0
	10	0	0	-84.005		0	0
	11	0	0	-36.442		0	0
	12	0	0	11.436		0	0
	13	0	0	-11.436		0	0
	14	0	0	-0.853		0	0
	15	0	0	0.853		0	0
	16	0	0	-30.668		0	0
	17	0	0	46.002		0	0
	18	0	0	4.101		0	0
	19	0	0	-4.101		0	0

12	1	0	0	45.976	0	0	0
	2	0	0	39.205	0	0	0
	3	0	0	36.16	0	0	0
	4	0	0	6.705	0	0	0
	5	0	0	6.582	0	0	0
	6	0	0	18.582	0	0	0
	7	0	0	108.058	0	0	0
	8	0	0	-59.7	0	0	0
	9	0	0	-68.401	0	0	0
	10	0	0	-48.595	0	0	0
	11	0	0	-61.376	0	0	0
	12	0	0	0.847	0	0	0
	13	0	0	-0.847	0	0	0
	14	0	0	1.163	0	0	0
	15	0	0	-1.163	0	0	0
	16	0	0	-17.598	0	0	0
	17	0	0	26.397	0	0	0
	18	0	0	-2.866	0	0	0
	19	0	0	2.866	0	0	0
13	1	0	0	51.406	0	0	0
10	2	0	0	45.809	0	0	0
	3	0	0	42.509	0	0	0
	4	0	0	6.706	0	0	0
	5	0	0	7.11	0	0	0
	6	0	0	18.197	0	0	0
	7	0	0	110.642	0	0	0
	8	0	0	-60.419	0	0	0
	9	0	0	-71.642	0	0	0
	10	0	0	-52.283	0	0	0
	11	0	0	-44.574	0	0	0
	12	0	0	2.525	0	0	0
	13	0	0	-2.525	0	0	0
	14	0	0	0.865	0	0	0
	15	0	0	-0.865	0	0	0
	16	0	0	-19.266	0	0	0
	17	0	0	28.898		0	0
	18	0	0	0.045		0	0
	19	0	0	-0.045		0	0
14	1	0	0	55.547	0	0	0
17	2	0	0	49.323	0	0	0
	3	0	0	46.68		0	0
	4	0	0	9.752	0	0	0
	5	0	0	8.97	0	0	0
	6	0	0	18.26		0	0
	7	0	0	119.589	0	0	0
	8	0	0	-61.379	0	0	0
	9	0	0	-66.072	0	0	0
	10	0	0	-58.862	0	0	0
	11	0	0	-58.435	0	0	0
	12	0	0	2.215	0	0	0
	13	0	0	-2.215	0		0
	13				0	0	
		0	0	1.125		0	0
	15	0	0	-1.125		0	0
	16	0	0	-21.138	0	0	0

	17	0	0	31.707	0	0	0
	18	0	0	0.406	0	0	0
	19	0	0	-0.406		0	0
15	1	0	0	55.75	0	0	0
	2	0	0	48.92	0	0	0
	3	0	0	46.338	0	0	0
	4	0	0	8.96		0	0
	5	0	0	8.819	0	0	0
	6	0	0	17.875	0	0	0
	7	0	0	117.463	0	0	0
	8	0	0	-58.75	0	0	0
	9	0	0	-55.235	0	0	0
	10	0	0	-58.289	0	0	0
	11	0	0	-64.402	0	0	0
	12	0	0	1.676	0	0	0
	13	0	0	-1.676		0	0
	14	0	0	1.346		0	0
	15	0	0	-1.346	0	0	0
	16	0	0	-20.67	0	0	0
	17	0	0	31.005		0	0
	18	0	0	0.338	0	0	0
	19	0	0	-0.338	0	0	0
16	1	0	0	48.905		0	0
10	2	0	0	42.616	0	0	0
	3	0	0	39.853	0	0	0
	4	0	0	7.542	0	0	0
	5	0	0	6.76		0	0
	6	0	0	11.052	0	0	0
	7	0	0	99.75	0	0	0
	8	0	0	-46.708	0	0	0
	9	0	0	-41.262	0	0	0
	10	0	0	-48.242	0	0	0
	11	0	0	-52.709	0	0	0
	12	0	0	1.06		0	0
	13	0	0	-1.06		0	0
	14	0	0	1.161		0	0
	15	0	0	-1.161	0	0	0
	16	0	0	-16.657	0	0	0
	17	0	0	24.985		0	0
	18	0	0	0.205		0	0
	19	0	0	-0.205		0	0
17	19	0	0	42.226		0	0
17	2	0	0	36.416		0	0
	3	0	0	32.964		0	0
	4	0	0	32.964 4.26		0	0
	5	0	0	2.942		0	0
	6	0	0	5.44		0	0
	7	0	0	90.376			
	8		0		0	0	0
		0		-40.477		0	0
	9	0	0	-33.416		0	0
	10	0	0	-45.55		0	0
	11	0	0	-48.558		0	0
	12	0	0	-0.032		0	0
	13	0	0	0.032	0	0	0

	14	0	0	0.942	0	0	0
	15	0	0	-0.942	0	0	0
	16	0	0	-14.37	0	0	0
	17	0	0	21.555	0	0	0
	18	0	0	0.031	0	0	0
	19	0	0	-0.031	0	0	0
18	13	0	0	66.289	0	0	0
10	2	0	0	56.272	0	0	0
	3	0	0	56.166	0	0	0
	4	0	0	22.357	0	0	0
	5	0	0	10.575	0	0	0
	6	0	0	15.014	0	0	0
	7	0	0	130.354	0	0	0
	8	0	0	-77.496	0	0	0
	9	0	0	-69.095	0	0	0
	10	0	0	-89.093	0	0	
	11	0	0	-96.964	0	0	0
	12	0	0	-0.096	0	0	0
	13 14	0	0	0.096 2.778	0	0	0
		0				0	0
	15	0	0	-2.778	0	0	0
	16	0	0	-25.463	0	0	0
	17	0	0	38.194	0	0	0
	18	0	0	-1.681	0	0	0
4.0	19	0	0	1.681	0	0	0
19	1	0	0	57.086	0	0	0
	2	0	0	46.371	0	0	0
	3	0	0	45.272	0	0	0
	4	0	0	16.759	0	0	0
	5	0	0	3.869	0	0	0
	6	0	0	10.936	0	0	0
	7	0	0	107.569	0	0	0
	8	0	0	-59.755	0	0	0
	9	0	0	-54.484	0	0	0
	10	0	0	-67.965	0	0	0
	11	0	0	-82.444	0	0	0
	12	0	0	-0.04	0	0	0
	13	0	0	0.04		0	0
	14	0	0	6.649	0	0	0
	15	0	0	-6.649	0	0	0
	16	0	0	-20.182	0	0	0
	17	0	0	30.273	0	0	0
	18	0	0	-12.488	0	0	0
	19	0	0	12.488		0	0
20	1	0	4.694	58.828	0	0	0
	2	0	3.61	47.459	0	0	0
	3	0	4.661	47.284		0	0
	4	0	-25.962	67.046		0	0
	5	0	20.048	7.859	0	0	0
	6	0	-12.176	8.005	0	0	0
	7	0	32.214	66.045	0	0	0
	8	0	-6.943	-61.67	0	0	0
	9	0	-2.625	-53.958	0	0	0
	10	0	-114.829	-79.343	0	0	0

	11	0	96.078	-80.308	0	0	0
	12	0	0.002	-0.185		0	0
	13	0	-0.002	0.185		0	0
	14	0	-99.536	0.406	0	0	0
	15	0	99.536	-0.406		0	0
	16	0	-1.774	-20.356	0	0	0
	17	0	2.661	30.535		0	0
	18	0	-18.435	25.918	0	0	0
	19	0	18.435	-25.918	0	0	0
21	1	0	0	53.732	0	0	0
21	2	0	0	43.794	0	0	0
	3	0	0	42.577	0	0	0
	4	0	0	102.776		0	0
	5	0	0	102.770	0	0	0
	6	0	0	3.509	0	0	0
	7	0	0	15.182	0	0	0
	8	0	0	-56.367	0	0	0
	9	0	0	-50.532	0	0	0
	10	0	0	-78.165			0
	11	0	0		0	0	
				-64.524		0	0
	12	0	0	-0.077	0	0	0
	13	0	0	0.077	0	0	0
	14	0	0	-6.609	0	0	0
	15	0	0	6.609	0	0	0
	16	0	0	-19.126		0	0
	17	0	0	28.688	0	0	0
	18	0	0	-10.865		0	0
	19	0	0	10.865		0	0
22	1	0	0	67.795	0	0	0
	2	0	0	57.407	0	0	0
	3	0	0	57.396		0	0
	4	0	0	132.294		0	0
	5	0	0	16.05	0	0	0
	6	0	0	11.191		0	0
	7	0	0	22.558		0	0
	8	0	0	-78.961		0	0
	9	0	0	-70.242	0	0	0
	10	0	0	-98.451	0	0	0
	11	0	0	-91.035		0	0
	12	0	0	-0.045		0	0
	13	0	0	0.045		0	0
	14	0	0	-3.104		0	0
	15	0	0	3.104		0	0
	16	0	0	-26.011	0	0	0
	17	0	0	39.017	0	0	0
	18	0	0	5.745		0	0
	19	0	0	-5.745		0	0
23	1	0	0	43.495		0	0
	2	0	0	37.363	0	0	0
	3	0	0	34.018	0	0	0
	4	0	0	93.035	0	0	0
	5	0	0	6.381	0	0	0
	6	0	0	3.112	0	0	0
	7	0	0	4.364		0	0

	8	0	0	-42.418	0	0	0
	9	0	0	-34.717	0	0	0
	10	0	0	-49.32	0	0	0
	11	0	0	-47.796	0	0	0
	12	0	0	-0.043	0	0	0
	13	0	0	0.043	0	0	0
	14	0	0	-1.04	0	0	0
-	15	0	0	1.04	0	0	0
-	16	0	0	-15.033	0	0	0
	17	0	0	22.55	0	0	0
	18	0	0	10.431	0		
	19		0	-10.431	0	0	0
24		0				0	0
24	1	0	0	48.185	0	0	0
	2	0	0	42.137	0	0	0
	3	0	0	39.286	0	0	0
	4	0	0	98.357	0	0	0
	5	0	0	11.019	0	0	0
	6	0	0	6.596	0	0	0
	7	0	0	7.106	0	0	0
	8	0	0	-45.529	0	0	0
	9	0	0	-39.992	0	0	0
	10	0	0	-48.943	0	0	0
	11	0	0	-47.309	0	0	0
	12	0	0	1.07	0	0	0
	13	0	0	-1.07	0	0	0
	14	0	0	-1.188	0	0	0
	15	0	0	1.188	0	0	0
	16	0	0	-16.335	0	0	0
	17	0	0	24.502	0	0	0
	18	0	0	-10.812	0	0	0
	19	0	0	10.812	0	0	0
25	1	0	0	55.036	0	0	0
	2	0	0	48.514	0	0	0
	3	0	0	45.841	0	0	0
	4	0	0	116.345	0	0	0
	5	0	0	17.826	0	0	0
	6	0	0	8.674	0	0	0
	7	0	0	8.504	0	0	0
	8	0	0	-57.483	0	0	0
	9	0	0	-53.717	0	0	0
	10	0	0	-60.093	0	0	0
	11	0	0	-57.486	0	0	0
	12	0	0	1.683	0	0	0
	13	0	0	-1.683	0	0	0
	14	0	0	-1.341	0	0	0
	15	0	0	1.341	0	0	0
	16	0	0	-20.37	0	0	0
	17	0	0	30.556	0	0	0
	18	0	0	-6.502	0	0	0
	19	0	0	6.502	0	0	0
26	19	0	0	55.349	0	0	0
20	2	0	0	49.337	0	0	0
	3	0	0	46.692	0	0	0
J.		()	()	40.097		. ()	()

	5	0	0	17.929	0	0	0
	6	0	0	9.035	0	0	0
	7	0	0	9.881	0	0	0
	8	0	0	-60.591	0	0	0
	9	0	0	-64.692	0	0	0
	10		0		0	0	
		0		-55.144			0
	11	0	0	-58.975		0	0
	12	0	0	2.213		0	0
	13	0	0	-2.213	0	0	0
	14	0	0	-1.127	0	0	0
	15	0	0	1.127	0	0	0
	16	0	0	-21.071	0	0	0
	17	0	0	31.607	0	0	0
	18	0	0	-5.24	0	0	0
	19	0	0	5.24		0	0
27	1	0	0	50.74	0	0	0
	2	0	0	45.404	0	0	0
	3	0	0	42.048	0	0	0
	4	0	0	109.892	0	0	0
	5	0	0	17.287	0	0	0
	6	0	0	6.971	0	0	0
	7	0	0	6.65	0	0	0
	8	0	0	-59.093	0	0	0
	9	0	0	-68.619	0	0	0
	10	0	0	-40.679	0	0	0
	11	0	0	-51.755	0	0	0
	12	0	0	2.484	0	0	0
	13	0	0	-2.484	0	0	0
	14	0	0	-0.838	0	0	0
	15	0	0	0.838	0	0	0
	16	0	0	-19.027	0	0	0
	17	0	0	28.541	0	0	0
	18	0	0	-8.456	0	0	0
	19	0	0	8.456		0	0
28	1	0	0	46.426		0	0
	2	0	0	39.714		0	0
	3	0	0	36.803		0	0
	4	0	0	108.114		0	0
	5	0	0	18.899		0	0
	6	0	0	6.844		0	0
	7	0	0	7.139		0	0
	8	0	0	-60.686		0	0
	9	0	0	-66.688		0	0
	10	0	0	-59.606		0	0
	11	0	0	-49.96		0	0
	12	0	0	0.729		0	0
	13	0	0	-0.729		0	0
	14						
		0	0	-1.025		0	0
	15	0	0	1.025		0	0
	16	0	0	-18.029		0	0
	17	0	0	27.044		0	0
	18	0	0	6.928		0	0
	19	0	0	-6.928		0	0
29	1	0	0	75.875	0	0	0

	2	0	0	63.925	0	0	0
	3	0	0	60.411	0	0	0
	4	0	0	118.194	0	0	0
	5	0	0	63.669	0	0	0
	6	0	0	8.565	0	0	0
	7	0	0	10.622	0	0	0
	8	0	0	-106.822	0	0	0
	9	0	0	-141.936	0	0	0
	10	0	0	-32.456	0	0	0
	11	0	0	-85.29	0	0	0
	12	0	0	11.531	0	0	0
	13	0	0	-11.531	0	0	0
	14	0	0	0.645	0	0	0
	15	0	0	-0.645	0	0	0
	16	0	0	-30.875	0	0	0
	17	0	0	46.312	0		
						0	0
	18	0	0	8.111	0	0	0
00	19	0	0	-8.111	0	0	0
30	1	0	0	75.364	0	0	0
	2	0	0	63.168	0	0	0
	3	0	0	59.306	0	0	0
	4	0	0	60.609	0	0	0
	5	0	0	115.311	0	0	0
	6	0	0	8.864	0	0	0
	7	0	0	7.123	0	0	0
	8	0	0	-136.351	0	0	0
	9	0	0	-96.98	0	0	0
	10	0	0	-33.427	0	0	0
	11	0	0	-77.941	0	0	0
	12	0	0	-11.425	0	0	0
	13	0	0	11.425	0	0	0
	14	0	0	1.602	0	0	0
	15	0	0	-1.602	0	0	0
	16	0	0	-28.847	0	0	0
	17	0	0	43.271	0	0	0
	18	0	0	4.62	0	0	0
	19	0	0	-4.62	0	0	0
31	1	0	0	50.237	0	0	0
	2	0	0	43.003	0	0	0
	3	0	0	39.999	0	0	0
	4	0	0	21.038	0	0	0
	5	0	0	109.386	0	0	0
	6	0	0	7.815	0	0	0
	7	0	0	7.446	0	0	0
	8	0	0	-71.322	0	0	0
	9	0	0	-62.413	0	0	0
	10	0	0	-60.255	0	0	0
	11	0	0	-54.741	0	0	0
	12	0	0	-0.957	0	0	0
	13	0	0	0.957	0	0	0
	14	0	0	-1.76	0	0	0
	15	0	0	1.76	0	0	0
	16	0	0	-19.535	0	0	0
	17	0	0	29.303	0	0	0

	18	0	0	-2.818	0	0	0
	19	0	0	2.818	0	0	0
32	1	0	0	49.997	0	0	0
	2	0	0	43.119	0	0	0
	3	0	0	39.5	0	0	0
	4	0	0	13.63	0	0	0
	5	0	0	100.49	0	0	0
	6	0	0	3.604		0	0
	7	0	0	4.557	0	0	0
	8	0	0	-72.563	0	0	0
	9	0	0	-55.092	0	0	0
	10	0	0	-32.421	0	0	0
	11	0	0	-48.37	0	0	0
	12	0	0	-2.324	0	0	0
	13	0	0	2.324		0	0
	14	0	0	-0.368	0	0	0
	15	0	0	0.368	0	0	0
	16	0	0	-18.49	0	0	0
	17	0	0	27.735		0	0
	18	0	0	-0.191	0	0	0
	19	0	0	0.191	0	0	0
33	1	0	0	54.994	0	0	0
	2	0	0	43.843	0	0	0
	3	0	0	44.972	0	0	0
	4	0	0	20.43	0	0	0
	5	0	0	97.944	0	0	0
	6	0	0	11.948	0	0	0
	7	0	0	10.589	0	0	0
	8	0	0	-68.025	0	0	0
	9	0	0	-58.748	0	0	0
	10	0	0	-58.902	0	0	0
	11	0	0	-58.898		0	0
	12	0	0	-2.327	0	0	0
	13	0	0	2.327	0	0	0
	14	0	0	-1.401	0	0	0
	15	0	0	1.401		0	0
	16	0	0	-20.571		0	0
	17	0	0	30.856		0	0
	18	0	0	-0.523		0	0
	19	0	0	0.523		0	0
34	1	0	0	54.527	0	0	0
	2	0	0	43.371	0	0	0
	3	0	0	44.271	0	0	0
	4	0	0	21.102		0	0
	5	0	0	99.206		0	0
	6	0	0	9.735		0	0
	7	0	0	9.836		0	0
	8	0	0	-59.232		0	0
	9	0	0	-56.959		0	0
	10	0	0	-63.123		0	0
	11	0	0	-57.913		0	0
	12	0	0	-2.045		0	0
	13	0	0	2.045		0	0
	14	0	0	-1.432			0

-	1				_	_	
	15	0	0	1.432	0	0	0
	16	0	0	-20.324	0	0	0
	17	0	0	30.486		0	0
	18	0	0	-0.657	0	0	0
	19	0	0	0.657	0	0	0
35	1	0	0	49.3	0	0	0
	2	0	0	42.402	0	0	0
	3	0	0	39.421	0	0	0
	4	0	0	6.535	0	0	0
	5	0	0	106.217	0	0	0
	6	0	0	5.614	0	0	0
	7	0	0	4.788	0	0	0
	8	0	0	-28.2	0	0	0
	9	0	0	-47.607	0	0	0
	10	0	0	-60.893	0	0	0
	11	0	0	-50.369	0	0	0
	12	0	0	-0.479	0	0	0
	13	0	0	0.479	0	0	0
	14	0	0	-0.927	0	0	0
	15	0	0	0.927	0	0	0
	16	0	0	-17.881	0	0	0
	17	0	0	26.822	0	0	0
	18	0	0	0.094	0	0	0
	19	0	0	-0.094	0	0	0
36	1	0	0	44.58	0	0	0
	2	0	0	39.278	0	0	0
	3	0	0	35.843	0	0	0
	4	0	0	6.668		0	0
	5	0	0	105.963	0	0	0
	6	0	0	3.947	0	0	0
	7	0	0	3.172	0	0	0
	8	0	0	-25.021	0	0	0
	9	0	0	-48.191	0	0	0
	10	0	0	-60.527		0	0
	11	0	0	-55.298		0	0
	12	0	0	-0.095		0	0
	13	0	0	0.095		0	0
	14	0	0	-1.308		0	0
	15	0	0	1.308		0	0
	16	0	0	-16.946		0	0
	17	0	0	25.42		0	0
	18	0	0	-0.085		0	0
	19	0	0	0.085		0	0
37			0	68.676			
31	1 2	0	0			0	0
		0		58.96		0	0
	3	0	0	59.161		0	0
	4	0	0	16.535		0	0
	5	0	0	148.092		0	0
	6	0	0	23.912	0	0	0
	7	0	0	11.976		0	0
	8	0	0	-62.428		0	0
	9	0	0	-88.116		0	0
	10	0	0	-109.603		0	0
	11	0	0	-103.249	0	0	0

	12	0	0	-0.097	0	0	0
	13	0	0	0.097	0	0	0
	14	0	0	-2.913	0	0	0
	15	0	0	2.913		0	0
	16	0	0	-28.639	0	0	0
	17	0	0	42.959	0	0	0
	18	0	0	-0.141	0	0	0
	19	0	0	0.141	0	0	0
38	1	0	0	49.277	0	0	0
30	2	0	0	41.414	0	0	0
	3		0	41.035	0		
	4	0	0	9.851	0	0	0
		0				0	0
	5	0	0	105.639	0	0	0
	6	0	0	27.23	0	0	0
	7	0	0	7.383	0	0	0
	8	0	0	-54.432	0	0	0
	9	0	0	-56.349	0	0	0
	10	0	0	-77.331	0	0	0
	11	0	0	-70.501	0	0	0
	12	0	0	-0.691	0	0	0
	13	0	0	0.691	0	0	0
	14	0	0	-1.244	0	0	0
	15	0	0	1.244	0	0	0
	16	0	0	-19.586	0	0	0
	17	0	0	29.379	0	0	0
	18	0	0	-4.334	0	0	0
	19	0	0	4.334	0	0	0
308	1	13.5955	0	0	0	0	0
	2	12.5302	0	0	0	0	0
	3	11.1573	0	0	0	0	0
	4	12.1796	0	0	0	0	0
	5	-8.79535	0	0	0	0	0
	6	13.3722	0	0	0	0	0
	7	-16.8775	0	0	0	0	0
	8	-154.708	0	0	0	0	0
	9	197.961	0	0	0	0	0
	10	-13.3747	0	0	0	0	0
	11	2.93916	0	0	0	0	0
	12	-107.639	0	0		0	0
	13	107.639	0	0		0	0
	14	1.28278	0	0		0	0
	15	-1.28278	0	0		0	0
	16	-0.102139	0	0		0	0
	17	0.153232	0	0		0	0
	18	14.2945	0	0		0	0
	19	-14.2945	0	0		0	0
309	1	19.2911	0	0		0	0
303	2	16.9392	0	0		0	0
	3	17.0919	0	0		0	0
	4	-13.7367	0	0		0	0
	5	19.2661	0	0			
						0	0
	6	-3.48227	0	0		0	0
	7	15.2313	0	0		0	0
	8	-163.491	0	0	0	0	0

	9	188.063	0	0	0	0	0
	10	-5.55406	0	0	0	0	0
	11	-20.557	0	0	0	0	0
	12	-107.474	0	0	0	0	0
	13	107.474	0	0	0	0	0
	14	-0.929718	0	0	0	0	0
	15	0.929718	0	0	0	0	0
	16	-2.36736	0	0	0	0	0
	17	3.55104	0	0	0	0	0
	18	-14.091	0	0	0	0	0
	19	14.091	0	0	0	0	0
101	1	-3.326	0	0	0	0	0
	2	-1.92	0	0	0	0	0
	3	-1.848	0	0	0	0	0
	4	-0.03	0	0	0	0	0
	5	-0.61	0	0	0	0	0
	6	-0.613	0	0	0	0	0
	7	-0.031	0	0	0	0	0
	8	-20.096	0	0	0	0	0
	9	21.084	0	0	0	0	0
	10	21.092	0	0	0	0	0
	11	21.088	0	0	0	0	0
	12	-0.909	0	0	0	0	0
	13	0.909	0	0	0	0	0
	14	0	-0.342	0	0	0	0
	15	0	0.342	0	0	0	0
	16	4.677	0	0	0	0	0
	17	-7.016	0	0	0	0	0
	18	0.196	0	0	0	0	0
	19	-0.196	0	0	0	0	0
102	1	-3.179	-0.013	0	0	0	0
	2	-2.259	-0.1	0	0	0	0
	3	-2.153	-0.084	0	0	0	0
	4	-0.011	-0.024	0		0	0
	5	-1.097	-2.423	0	0	0	0
	6	-0.493	2.289	0	0	0	0
	7	0.038	0.085	0		0	0
	8	-21.224	-1.335	0	0	0	0
	9	21.407	0.04	0	0	0	0
	10	21.244	-0.32	0	0	0	0
	11	21.653	0.584	0	0	0	0
	12	-0.927	0.008	0	0	0	0
	13	0.927	-0.008	0	0	0	0
	14	-0.644	-1.764	0	0	0	0
	15	0.644	1.764	0	0	0	0
	16	4.681	-0.095	0	0	0	0
	17	-7.021	0.142	0	0	0	0
	18	-0.108	-0.238	0	0	0	0
	19	0.108	0.238	0		0	0
103	1	-2.522	0	0	0	0	0
	2	-2.214	0	0		0	0
	3	-2.115	0	0		0	0
	4	0	0	0	0	0	0
	5	0	0	0		0	0

	6	-1.529	0	0	0	0	0
	7	0	0	0	0	0	0
	8	-20.619	0	0	0	0	0
	9	21.389	0	0	0	0	0
	10	21.389	0	0	0	0	0
	11	21.389	0	0	0	0	0
	12	-0.931	0	0	0	0	0
	13	0.931	0	0	0	0	0
	14	0	-0.342	0	0	0	0
	15	0	0.342	0	0	0	0
	16	4.724	0	0	0	0	0
	17	-7.085	0	0	0	0	0
	18	0	0	0	0	0	0
	19	0	0	0	0	0	0
104	1	-1.456	0	0	0	0	0
	2	-1.197	0	0	0	0	0
	3	-1.189	0	0	0	0	0
	4	-0.097	0	0	0	0	0
	5	-0.089	0	0	0	0	0
	6	-1.122	0	0	0	0	0
	7	-0.147	0	0	0	0	0
	8	-24.663	0.642	0	0	0	0
	9	14.904	-0.375	0	0	0	0
	10	16.849	-0.469	0	0	0	0
	11	27.645	-0.992	0	0	0	0
	12	-1.105	0	0	0	0	0
	13	1.105	0	0	0	0	0
	14	-0.32	-0.396	0	0	0	0
	15	0.32	0.396	0	0	0	0
	16	4.261	-0.161	0	0	0	0
	17	-6.392	0.242	0	0	0	0
	18	-0.949	0	0	0	0	0
	19	0.949	0	0	0	0	0
105	1	1.424	-0.463	0	0	0	0
	2	1.926	-0.626	0	0	0	0
	3	1.688	-0.548	0	0	0	0
	4	-0.325	0.106	0	0	0	0
	5	-0.299	0.097	0	0	0	0
	6	0.462	-0.15	0	0	0	0
	7	-0.493	0.16	0	0	0	0
	8	-21.978	6.529	0	0	0	0
	9	3.906	-1.141	0	0	0	0
	10	6.03	-1.715	0	0	0	0
	11	28.914	-9.015	0	0	0	0
	12	-1.155	0.216	0	0	0	0
	13	1.155	-0.216	0	0	0	0
	14	-0.581	-0.301	0	0	0	0
	15	0.581	0.301	0	0	0	0
	16	1.98	-0.588	0	0	0	0
	17	-2.969	0.882	0	0	0	0
	18	-3.175	1.032	0	0	0	0
	19	3.175	-1.032	0	0	0	0
106	1	-3.092	2.247	0	0	0	0
	2	-3.545	2.576	0	0	0	0

	3	-3.413	2.48	0	0	0	0
	4	-0.056	0.041	0	0	0	0
	5	-0.051	0.037	0	0	0	0
	6	-2.698	1.96	0	0	0	0
	7	-0.085	0.062	0	0	0	0
	8	3.567	-3.267	0	0	0	0
	9	13.085	-9.441	0	0	0	0
	10	13.142	-9.482	0	0	0	0
	11	26.531	-18.614	0	0	0	0
	12	-1.005	0.464	0	0	0	0
	13	1.005	-0.464	0	0	0	0
	14	0.527	-0.749	0	0	0	0
	15	-0.527	0.749	0	0	0	0
	16	5.678	-4.097	0	0	0	0
	17	-8.516	6.145	0	0	0	0
	18	-0.547	0.397	0	0	0	0
	19	0.547	-0.397	0	0	0	0
107	1	-2.243	3.061	0	0	0	0
	2	-2.567	3.508	0	0	0	0
	3	-2.472	3.379	0	0	0	0
	4	-0.042	0.057	0	0	0	0
	5	-0.038	0.052	0	0	0	0
	6	-1.949	2.652	0	0	0	0
	7	-0.063	0.086	0	0	0	0
	8	18.854	-26.593	0	0	0	0
	9	9.505	-13.045	0	0	0	0
	10	9.547	-13.102	0	0	0	0
	11	3.19	-3.43	0	0	0	0
	12	-0.749	0.52	0	0	0	0
	13	0.749	-0.52	0	0	0	0
	14	0.471	-1.011	0	0	0	0
	15	-0.471	1.011	0	0	0	0
	16	4.125	-5.661	0	0	0	0
	17	-6.187	8.491	0	0	0	0
	18	-0.407	0.553	0	0	0	0
	19	0.407	-0.553	0	0	0	0
108	1	0.463	-1.425	0	0	0	0
	2	0.633	-1.948	0	0	0	0
	3	0.555	-1.708	0	0	0	0
	4	-0.106	0.325	0	0	0	0
	5	-0.097	0.299	0	0	0	0
	6	0.198	-0.609	0	0	0	0
	7	-0.16	0.493	0	0	0	0
	8	9.193	-29.387	0	0	0	0
	9	1.602	-5.654	0	0	0	0
	10	1.248	-4.207	0	0	0	0
	11	-6.674	22.427	0	0	0	0
	12	-0.298	-0.611	0	0	0	0
	13	0.298	0.611	0	0	0	0
	14	0.224	-1.184	0	0	0	0
	15	-0.224	1.184	0	0	0	0
	16	0.588	-1.967	0	0	0	0
	17	-0.882	2.951	0	0	0	0
	18	-1.032	3.175	0		0	0

			.				
	19	1.032	-3.175	0	0	0	0
109	1	0.053	2.223	0	0	0	0
	2	1.058	1.789	0	0	0	0
	3	0.876	1.701	0	0	0	0
	4	-0.353	-0.044	0	0	0	0
	5	-0.324	-0.04	0	0	0	0
	6	-0.991	0.91	0	0	0	0
	7	0.641	0.403	0	0	0	0
	8	2.969	-28.65	0	0	0	0
	9	-2.458	-19.438	0	0	0	0
	10	-0.699	-11.038	0	0	0	0
	11	-1.717	25.892	0	0	0	0
	12	-1.001	-0.561	0	0	0	0
	13	1.001	0.561	0	0	0	0
	14	0	-1.18	0	0	0	0
	15	0	1.18	0	0	0	0
	16	-0.395	-4.831	0	0	0	0
	17	0.592	7.247	0	0	0	0
	18	-1.196	0.472	0	0	0	0
	19	1.196	-0.472	0	0	0	0
110	1	0	3.122	0	0	0	0
	2	0	2.072	0	0	0	0
	3	0	2.033	0	0	0	0
	4	0	0.141	0	0	0	0
	5	0	0.129	0	0	0	0
	6	0	1.84	0	0	0	0
	7	0	0.001	0	0	0	0
	8	0	-25.037	0	0	0	0
	9	0	-23.073	0	0	0	0
	10	0	-12.024	0	0	0	0
	11	0	23.801	0	0	0	0
	12	-0.393	0.234	0	0	0	0
	13	0.393	-0.234	0	0	0	0
	14	0	-1.055	0	0	0	0
	15	0	1.055	0	0	0	0
	16	0	-5.132	0	0	0	0
	17	0	7.698	0	0	0	0
	18	0	0.478	0	0	0	0
	19	0	-0.478	0	0	0	0
111	1	0	3.084	0	0	0	0
	2	0	2.059	0	0	0	0
	3	0	2.015	0	0	0	0
	4	0	0.122	0	0	0	0
	5	0	0.128	0	0	0	0
	6	0	-0.028	0		0	0
	7	0	1.852	0	0	0	0
	8	0	-22.901	0	0	0	0
	9	0	-23.619	0	0	0	0
	10	0	-11.792	0	0	0	0
	11	0	23.632	0	0	0	0
	12	-0.382	-0.233	0	0	0	0
	13	0.382	0.233	0	0	0	0
	14	0	-1.062	0		0	0
	15	0	1.062	0	0	0	0

	16	0	-5.051	0	0	0	0
	17	0	7.576	0	0	0	0
	18	0	0.462	0	0	0	0
	19	0	-0.462	0	0	0	0
112	1	-0.147	2.416	0	0	0	0
	2	-1.16	1.983	0	0	0	0
	3	-0.989	1.89	0	0	0	0
	4	0.305	0.001	0	0	0	0
	5	0.321	-0.016	0	0	0	0
	6	-0.873	0.477	0	0	0	0
	7	1.022	1.019	0	0	0	0
	8	2.858	-20.152	0	0	0	0
	9	0.789	-25.029	0	0	0	0
	10	1.256	-11.834	0	0	0	0
	11	1.336	26.006	0	0	0	0
	12	-1.003	0.555	0	0	0	0
	13	1.003	-0.555	0	0	0	0
	14	-0.019	-1.126	0	0	0	0
	15	0.019	1.126	0	0	0	0
	16	0.588	-5.086	0	0	0	0
	17	-0.882	7.628	0	0	0	0
	18	1.155	0.525	0	0	0	0
	19	-1.155	-0.525	0	0	0	0
113	1	0.217	0.669	0	0	0	0
	2	0.164	0.504	0	0	0	0
	3	0.183	0.565	0	0	0	0
	4	0.076	0.235	0	0	0	0
	5	0.069	0.213	0	0	0	0
	6	0.08	0.245	0	0	0	0
	7	0.346	1.067	0	0	0	0
	8	-3.473	-11.007	0	0	0	0
	9	-9.124	-27.354	0	0	0	0
	10	-3.06	-9.419	0	0	0	0
	11	5.882	19.602	0	0	0	0
	12	-0.362	0.267	0	0	0	0
	13	0.362	-0.267	0	0	0	0
	14	-0.212	-1.102	0	0	0	0
	15	0.212	1.102	0	0	0	0
	16	-1.302	-4.008	0	0	0	0
	17	1.953	6.012	0	0	0	0
	18	0.61	1.877	0	0	0	0
	19	-0.61	-1.877	0	0	0	0
114	1	0.414	0.569	0	0	0	0
	2	0.312	0.429	0	0	0	0
	3	0.349	0.48	0	0	0	0
	4	0.145	0.2	0	0	0	0
	5	0.132	0.181	0	0	0	0
	6	0.151	0.208	0	0	0	0
	7	0.659	0.908	0	0	0	0
	8	-5.696	-7.84	0	0	0	0
	9	-13.264	-19.142	0	0	0	0
	10	-5.821	-8.012	0	0	0	0
	11	-1.102	-0.371	0	0	0	0
	12	-0.542	-0.129	0	0	0	0

	13	0.542	0.129	0	0	0	0
	14	-0.272	-0.824	0	0	0	0
	15	0.272	0.824	0	0	0	0
	16	-2.477	-3.41	0	0	0	0
	17	3.716	5.114	0	0	0	0
	18	1.16	1.597	0	0	0	0
	19	-1.16	-1.597	0	0	0	0
115	1	-1.411	-1.025	0	0	0	0
	2	-1.931	-1.403	0	0	0	0
	3	-1.692	-1.23	0	0	0	0
	4	0.434	0.315	0	0	0	0
	5	0.394	0.286	0	0	0	0
	6	0.453	0.329	0	0	0	0
	7	-0.184	-0.133	0	0	0	0
	8	-3.828	-1.906	0	0	0	0
	9	4.073	1.664	0	0	0	0
	10	-4.201	-2.177	0	0	0	0
	11	-17.492	-9.857	0	0	0	0
	12	-0.783	-0.249	0	0	0	0
	13	0.783	0.249	0	0	0	0
	14	0.763	-0.195	0	0	0	0
	15	-0.337	0.195	0	0	0	0
	16	-1.73		0	0	0	0
	17		-0.88		0		
		2.594	1.321	0		0	0
	18	3.473	2.524	0	0	0	0
440	19	-3.473	-2.524	0	0	0	0
116	1	-0.623	-0.203	0	0	0	0
	2	-0.771	-0.251	0	0	0	0
	4	-0.694	-0.225	0	0	0	
		0.123	0.04	0		0	0
	5	0.112	0.036	0	0	0	0
	6	0.129	0.042	0	0	0	0
	7	0.131	0.042	0	0	0	0
	8	-11.449	-3.18	0	_	0	0
	9	17.047	4.954	0		0	0
	10	-13.168	-3.675	0	0	0	0
	11	-34.071	-9.676	0	0	0	0
	12	-1.022	-0.288	0	0	0	0
	13	1.022	0.288	0	0	0	0
	14	0.223	-0.063	0	0	0	0
	15	-0.223	0.063	0	0	0	0
	16	-4.946	-1.375	0	0	0	0
	17	7.42	2.062	0	0	0	0
	18	0.988	0.321	0	0	0	0
	19	-0.988	-0.321	0	0	0	0
117	1	-0.641	0.039	0	0	0	0
	2	-0.649	0.039	0	0	0	0
	3	-0.62	0.037	0	0	0	0
	4	0	0	0	0	0	0
	5	0	0	0	0	0	0
	6	0	0	0	0	0	0
	7	-0.035	0.005	0	0	0	0
	8	-12.281	0.731	0	0	0	0
	9	21.942	-1.306	0	0	0	0

	10	-19.221	1.142	0	0	0	0
	11	-28.614	1.707	0	0	0	0
	12	-0.912	0.054	0	0	0	0
	13	0.912	-0.054	0	0	0	0
	14	0	-0.624	0	0	0	0
	15	0	0.624	0	0	0	0
	16	-5.28	0.315	0	0	0	0
	17	7.92	-0.472	0	0	0	0
	18	7.92		0	0		
		_	0			0	0
110	19	0	0	0	0	0	0
118	1	-0.625	-0.033	0	0	0	0
	2	-0.585	-0.022	0	0	0	0
	3	-0.559	-0.021	0	0	0	0
	4	0	0	0	0	0	0
	5	0	0	0	0	0	0
	6	0	0	0	0	0	0
	7	0	0	0	0	0	0
	8	-11.082	-0.408	0	0	0	0
	9	20.799	0.765	0	0	0	0
	10	-21.575	-0.794	0	0	0	0
	11	-21.575	-0.794	0	0	0	0
	12	-0.822	-0.03	0	0	0	0
	13	0.822	0.03	0	0	0	0
	14	0.022	-0.562	0	0	0	0
	15	0	0.562	0	0	0	0
	16	-4.765	-0.175	0	0	0	0
	17						
		7.147	0.263	0	0	0	0
	18	0	0	0	0	0	0
110	19	0	0	0	0	0	0
119	1	-0.926	1.996	0	0	0	0
	2	-0.585	3.036	0	0	0	0
	3	-0.559	3.127	0	0	0	0
	4	0	7.555	0	0	0	0
	5	0	1.719	0	0	0	0
	6	0	-1.332	0	0	0	0
	7	0	-4.906	0	0	0	0
	8	-11.082	-5.47	0	0	0	0
	9	20.799	-6.097	0	0	0	0
	10	-21.575	-10.135	0	0	0	0
	11	-21.575	2.266	0	0	0	0
	12	-0.822	-0.003	0	0	0	0
	13	0.822	0.003	0	0	0	0
	14	0.022	-4.954	0	0	0	0
	15	0	4.954	0	0	0	0
	16	-4.765	-2.075	0	0	0	0
	17	7.147	3.113	0	0	0	0
	18	0	9.918	0	0	0	0
	19	0	-9.918	0	0		
100		-				0	0
120	1	-0.821	0	0	0	0	0
	2	-0.585	0	0	0	0	0
	3	-0.559	0	0	0	0	0
	4	0	0	0	0	0	0
	5	0	0	0	0	0	0
	6	0	0	0	0	0	0

	7	0	0	0	0	0	0
	8	-11.082	0	0	0	0	0
	9	20.799	0	0	0	0	0
	10	-21.575	0	0	0	0	0
	11	-21.575	0	0	0	0	0
	12		0				
	13	-0.822	0	0	0	0	0
		0.822		0	0	0	0
	14	0	-0.562	0	0	0	0
	15	0	0.562	0	0	0	0
	16	-4.765	0	0	0	0	0
	17	7.147	0	0	0	0	0
	18	0	0	0	0	0	0
101	19	0	0	0	0	0	0
121	1	-0.926	-3.224	0	0	0	0
	2	-0.585	-3.959	0	0	0	0
	3	-0.559	-4.122	0	0	0	0
	4	0	3.532	0	0	0	0
	5	0	0.941	0	0	0	0
	6	0	-2.005	0	0	0	0
	7	0	-8.419	0	0	0	0
	8	-11.082	6.513	0	0	0	0
	9	20.798	9.081	0	0	0	0
	10	-21.575	-1.109	0	0	0	0
	11	-21.575	11.083	0	0	0	0
	12	-0.822	-0.048	0	0	0	0
	13	0.822	0.048	0	0	0	0
	14	0	-4.543	0	0	0	0
	15	0	4.543	0	0	0	0
	16	-4.765	2.353	0	0	0	0
	17	7.147	-3.529	0	0	0	0
	18	0	-9.239	0	0	0	0
	19	0	9.239	0	0	0	0
122	1	-0.625	0.017	0	0	0	0
	2	-0.585	0.011	0	0	0	0
	3	-0.559	0.01	0	0	0	0
	4	0	0	0	0	0	0
	5	0	0	0	0	0	0
	6	0	0	0	0	0	0
	7	0	0	0	0	0	0
	8	-11.082	0.201	0	0	0	0
	9	20.799	-0.376	0	0	0	0
	10	-21.575	0.391	0	0	0	0
	11	-21.575	0.391	0	0	0	0
	12	-0.822	0.015	0	0	0	0
	13	0.822	-0.015	0		0	0
	14	0	-1.021	0	0	0	0
	15	0	1.021	0	0	0	0
	16	-4.765	0.086	0	0	0	0
	17	7.147	-0.129	0	0	0	0
	18	0	0.123	0	0	0	0
	19	0	0	0	0	0	0
123	1	-0.641	-0.022	0	0	0	0
120	2	-0.649	-0.018	0		0	0
	3	-0.62	-0.018	0		0	0
	3	-0.02	-0.010	U	U	U	U

	4	-0.035	-0.001	0	0	0	0
	5	0	0	0	0	0	0
	6	0	0	0	0	0	0
	7	0	0	0	0	0	0
	8	-12.281	-0.36	0	0	0	0
	9	21.942	0.642	0	0	0	0
	10	-28.614	-0.844	0	0	0	0
	11	-19.221	-0.559	0	0	0	0
	12	-0.912	-0.026	0	0	0	0
	13	0.912	0.026	0	0	0	0
	14	0	-1.142	0	0	0	0
	15	0	1.142	0	0	0	0
	16	-5.28	-0.155	0	0	0	0
	17	7.92	0.232	0	0	0	0
	18	0	0.232	0	0	0	0
	19	0	0	0	0	0	0
124	1	-0.619	0.201	0	0	0	0
121	2	-0.764	0.248	0	0	0	0
	3	-0.687	0.223	0	0	0	0
	4	0.122	-0.04	0	0	0	0
	5	0.139	-0.045	0	0	0	0
	6	0.133	-0.037	0	0	0	0
	7	0.113	-0.037	0	0	0	0
	8	-11.463	3.184	0	0	0	0
	9	17.207	-5.006	0	0	0	0
	10	-34.086	9.681	0	0	0	0
	11	-13.184	3.68	0	0	0	0
	12	-1.023	0.289	0	0	0	0
	13	1.023	-0.289	0	0	0	0
	14	-0.223	-0.263	0	0	0	0
	15	0.223	0.063	0	0	0	0
	16	-4.952	1.377	0	0	0	0
	17	7.427	-2.065	0	0	0	0
	18	0.952	-0.309	0	0	0	0
	19	-0.952	0.309	0	0	0	0
125	19	-1.396	1.015	0	0		0
125	-				0	0	
	2	-1.907	1.386 1.212	0	0	0	0
		-1.668 -0.213	0.155		0	0	0
	4 5	0.49	-0.356	0	0	0	0
				0		0	0
	6	0.396	-0.287	0	0	0	0
	7	0.431	-0.313	0	0	0	0
	8	-3.878	1.942	0	0	0	0
	9	4.633	-2.071	0	0	0	0
	10	-17.545	9.896	0	0	0	0
	11	-4.257	2.218	0	0	0	0
	12	-0.785	0.251	0	0	0	0
	13	0.785	-0.251	0	0	0	0
	14	-0.337	-0.195	0	0	0	0
	15	0.337	0.195	0	0	0	0
	16	-1.748	0.894	0	0	0	0
	17	2.622	-1.341	0	0	0	0
	18	3.347	-2.432	0	0	0	0
	19	-3.347	2.432	0	0	0	0

126	1	0.418	-0.576	0	0	0	0
	2	0.32	-0.44	0	0	0	0
	3	0.357	-0.491	0	0	0	0
	4	0.649	-0.894	0	0	0	0
	5	0.164	-0.225	0	0	0	0
	6	0.132	-0.182	0	0	0	0
	7	0.144	-0.198	0	0	0	0
	8	-5.713	7.864	0	0	0	0
	9	-13.077	18.884	0	0	0	0
	10	-1.119	0.395	0	0		0
						0	
	11	-5.839	8.038	0	0	0	0
	12	-0.543	0.13	0	0	0	0
	13	0.543	-0.13	0	0	0	0
	14	0.272	-0.823	0	0	0	0
	15	-0.272	0.823	0	0	0	0
	16	-2.483	3.418	0	0	0	0
	17	3.725	-5.127	0	0	0	0
	18	1.118	-1.539	0	0	0	0
	19	-1.118	1.539	0	0	0	0
127	1	0.22	-0.677	0	0	0	0
	2	0.168	-0.518	0	0	0	0
	3	0.188	-0.578	0	0	0	0
	4	0.341	-1.051	0	0	0	0
	5	0.086	-0.265	0	0	0	0
	6	0.069	-0.214	0	0	0	0
	7	0.076	-0.233	0	0	0	0
	8	-3.482	11.034	0	0	0	0
	9	-10.196	31.63	0	0	0	0
	10	5.873	-19.573	0	0	0	0
	11	-3.07	9.449	0	0	0	0
	12	-0.362	-0.265	0	0	0	0
	13	0.362	0.265	0	0	0	0
	14	0.302	-1.102		0		
	15			0		0	0
		-0.212	1.102	0	0	0	0
	16	-1.305	4.018	0	0	0	0
	17	1.958	-6.027	0	0	0	0
	18	0.588	-1.809	0	0	0	0
	19	-0.588	1.809	0	0	0	0
128	1	-0.047	-2.38	0	0	0	0
	2	-1.031	-1.938	0	0	0	0
	3	-0.868	-1.849	0	0	0	0
	4	1.011	-1.015	0	0	0	0
	5	-0.71	-0.423	0	0	0	0
	6	0.31	0.011	0	0	0	C
	7	0.299	-0.003	0	0	0	0
	8	2.607	20.066	0	0	0	0
	9	-1.669	28.724	0	0	0	C
	10	1.023	-26.116	0	0	0	0
	11	1.034	11.761	0	0	0	C
	12	-1.012	-0.558	0	0	0	C
	13	1.012	0.558	0	0	0	0
	14	0.058	-1.111	0	0	0	0
		-0.058	1.111	0	0	0	0
	15	-() ()5X	1 1 1 1 1			1.11	•

	17	-0.746	-7.582	0	0	0	0
	18	1.171	-0.483	0	0	0	0
	19	-1.171	0.483	0	0	0	0
129	1	0	-3.124	0	0	0	0
	2	0	-2.111	0	0	0	0
	3	0	-2.064	0	0	0	0
	4	0	-1.848	0	0	0	0
	5	0	-0.037	0	0	0	0
	6	0	-0.124	0	0	0	0
	7	0	-0.119	0	0	0	0
	8	0	23.001	0	0	0	0
	9	0	24.48	0	0	0	0
	10	0	-23.507	0	0	0	0
	11	0	11.881	0	0	0	0
	12	-0.382	0.237	0	0	0	0
	13	0.382	-0.237	0	0	0	0
	14	0	-1.077	0	0	0	0
	15	0	1.077	0	0	0	0
	16	0	5.087	0	0	0	0
	17	0	-7.63	0	0	0	0
	18	0	-0.468	0	0	0	0
	19	0	0.468	0	0	0	0
130	1	0	-2.959	0	0	0	0
130	2	0	-1.878	0	0	0	0
	3	0	-1.857	0	0	0	0
	4	0	-0.04	0	0	0	0
	5	0	-1.692	0	0	0	0
	6	0	-0.149	0	0	0	0
	7	0	-0.149	0	0	0	0
	8	0	24.852	0	0	0	0
	9	0	22.666	0	0	0	0
	10	0	-24.08	0	0	0	0
	11	0	11.638	0	0	0	
	12	-0.393	-0.174	0	0	0	0
					0		
	13	0.393	0.174	0		0	0
	14	0	-1.071	0	0	0	0
	15	0	1.071	0	0	0	0
	16	0	4.97	0	0	0	0
	17	0	-7.454	0	0	0	0
	18	0	-0.668	0	0	0	0
404	19	0 400	0.668	0	0	0	0
131	1	0.462	-2.092	0	0	0	0
	2	1.543	-1.643	0	0	0	0
	3	1.318	-1.575	0	0	0	0
	4	0.544	-0.44	0	0	0	0
	5	-0.62	-0.921	0	0	0	0
	6	-0.373	0.021	0	0	0	0
	7	-0.413	0.016	0	0	0	0
	8	2.415	28.704	0	0	0	C
	9	-3.519	19.017	0	0	0	C
	10	-2.355	-25.956	0	0	0	C
	11	-1.7	10.702	0	0	0	0
	12	-0.856	0.664	0	0	0	C
	13	0.856	-0.664	0	0	0	0

	14	-0.04	-1.253	0	0	0	0
	15	0.04	1.253	0	0	0	0
	16	-0.816	4.693	0	0	0	0
	17	1.225	-7.04	0	0	0	0
	18	-1.673	-0.668	0	0	0	0
	19	1.673	0.668	0	0	0	0
132	1	0.347	1.066	0	0	0	0
	2	0.454	1.397	0	0	0	0
	3	0.385	1.183	0	0	0	0
	4	-0.161	-0.495	0	0	0	0
	5	0.112	0.344	0	0	0	0
	6	-0.092	-0.284	0	0	0	0
	7	-0.107	-0.33	0	0	0	0
	8	10.262	32.125	0	0	0	0
	9	2.272	7.454	0	0	0	0
	10	-6.261	-20.791	0	0	0	0
	11	1.964	6.2	0	0	0	0
	12	-0.242	0.517	0	0	0	0
	13	0.242	-0.517	0	0	0	0
	14	-0.293	-1.312	0	0	0	0
	15	0.293	1.312	0	0	0	0
	16	0.886	2.794	0	0	0	0
	17	-1.329	-4.19	0	0	0	0
	18	-0.964	-2.966	0	0	0	0
100	19	0.964	2.966	0	0	0	0
133	1	-2.33	-3.207	0	0	0	0
	2	-2.666	-3.67	0	0	0	0
	3	-2.546	-3.505	0	0	0	0
	4	0.003	0.004	0	0	0	0
	5	-1.716	-2.362	0	0	0	0
	6	0.002	0.002	0	0	0	0
	7	0.002	0.003	0	0	0	0
	8	18.766	27.42	0	0	0	0
	9	10.308	14.734	0	0	0	0
	10	3.861	4.751	0	0	0	0
	11 12	10.305 -0.579	14.73	0	0	0	0
	13	0.579	-0.708 0.708		0	0	0
	14	-0.569	-0.847	0	0	0	0
	15	0.569	0.847	0	0	0	0
	16	4.43	6.332	0	0	0	0
	17	-6.645	-9.498	0	0	0	0
	18	0.043	0.024	0	0	0	0
	19	-0.017	-0.024	0	0	0	0
134	1	-2.935	-2.133	0	0	0	0
134	2	-3.34	-2.133	0	0	0	0
	3	-3.218	-2.338	0	0	0	0
	4	-0.088	-0.064	0	0	0	0
	5	-3.054	-2.219	0	0	0	0
	6	-0.051	-0.037	0	0	0	0
	7	-0.051	-0.037	0	0	0	0
	8	4.215	3.401	0	0	0	0
	9	13.387	9.22	0	0	0	0
	10	26.686	18.055	0	0	0	0
	10	20.000	10.000	U	U	U	U

	11	13.476	9.284	0	0	0	0
	12	-0.79	-0.523	0	0	0	0
	13	0.79	0.523	0	0	0	0
	14	-0.686	-0.569	0	0	0	0
	15	0.686	0.569	0	0	0	0
	16	5.817	4.008	0	0	0	0
	17	-8.725	-6.013	0	0	0	0
	18	-0.529	-0.384	0	0	0	0
	19	0.529	0.384	0	0	0	0
135	1	1.141	0.371	0	0	0	0
	2	1.554	0.505	0	0	0	0
	3	1.31	0.426	0	0	0	0
	4	-0.569	-0.185	0	0	0	0
	5	-0.281	-0.091	0	0	0	0
	6	-0.326	-0.106	0	0	0	0
	7	-0.379	-0.123	0	0	0	0
	8	-20.008	-5.985	0	0	0	0
	9	4.131	1.286	0	0	0	0
	10	29.002	9.231	0	0	0	0
	11	6.493	1.95	0	0	0	0
	12	-1.255	-0.26	0	0	0	0
	13	1.255	0.26	0	0	0	0
	14	0.575	-0.268	0	0	0	0
	15	-0.575	0.268	0	0	0	0
	16	2.169	0.68	0	0	0	0
	17	-3.253	-1.021	0	0	0	0
	18	-3.404	-1.106	0	0	0	0
	19	3.404	1.106	0	0	0	0
136	1	-1.645	0	0	0	0	0
.00	2	-1.428	0	0	0	0	0
	3	-1.411	0	0	0	0	0
	4	-0.151	0	0	0	0	0
	5	-1.384	0	0	0	0	0
	6	-0.087	0	0	0	0	0
	7	-0.101	0	0	0	0	0
	8	-23.917	-0.669	0	0	0	0
	9	15.208	0.391	0	0	0	0
	10	27.695	1.034	0	0	0	0
	11	17.211	0.489	0	0	0	0
	12	-1.137	0.400	0	0	0	0
	13	1.137	0	0	0	0	0
	14	0.302	-0.395	0	0	0	0
	15	-0.302	0.395	0	0	0	0
	16	4.407	0.393	0	0	0	0
	17	-6.61	-0.252	0	0	0	0
	18	-0.907	0.232	0	0	0	0
	19	0.907	0	0	0	0	0
137	19	-2.522	0	0	0	0	0
13/	2	-2.522	0	0	0	0	
	3		0	0	0		0
	4	-2.115 0	0	0	0	0	0
	5	-1.529	0	0	0		
			0			0	0
	6	0		0	0	0	0
	7	0	0	0	0	0	0

	8	-20.619	0	0	0	0	0
	9	21.389	0	0	0	0	0
	10	21.389	0	0	0	0	0
	11	21.389	0	0	0	0	0
	12	-0.931	0	0	0	0	0
	13	0.931	0	0	0	0	0
	14	0	-0.342	0	0	0	0
	15	0	0.342	0	0	0	0
	16	4.724	0	0	0	0	0
	17	-7.085	0	0	0	0	0
	18	0	0	0	0	0	0
	19	0	0	0	0	0	0
138	1	-3.344	0.379	0	0	0	0
	2	-2.461	0.547	0	0	0	0
	3	-2.344	0.506	0	0	0	0
	4	0.041	-0.09	0	0	0	0
	5	-0.586	-2.083	0	0	0	0
	6	-1.188	2.623	0	0	0	0
	7	-0.008	0.017	0	0	0	0
	8	-20.538	-0.179	0	0	0	0
	9	21.676	-0.634	0	0	0	0
	10	21.831	-0.976	0	0	0	0
	11	21.425	-0.08	0	0	0	0
	12	-0.956	0.056	0	0	0	0
	13	0.956	-0.056	0	0	0	0
	14	0.644	-1.764	0	0	0	0
	15	-0.644	1.764	0	0	0	0
	16	4.813	-0.198	0	0	0	0
	17	-7.22	0.297	0	0	0	0
	18	-0.088	0.194	0	0	0	0
	19	0.088	-0.194	0	0	0	0
		l.					

3.2 Spostamenti nodali

3.2.1 Combinazioni rare

	Ux	Uy	Uz
	[mm]	[mm]	[mm]
1	0.1	0.0	-21.3
2	0.1	0.1	-15.8
3	0.1	-0.1	-15.7
4	0.1	0.0	-16.2
5	0.0	0.0	-15.3
6	0.1	0.0	-15.7
7	0.1	0.0	-15.7
8	0.2	0.0	-21.5
9	0.1	0.1	-16.0
10	0.1	-0.1	-15.9
11	0.2	0.0	-16.4
12	0.1	0.0	-15.5
13	0.1	0.0	-16.0
14	0.1	0.0	-15.9
15	0.2	0.0	0.7
16	-0.4	0.0	0.6
17	-0.1	0.2	0.5
18	-0.1	-0.2	0.5
19	0.3	0.0	0.5
20	-0.4	0.0	0.4
21	0.0	0.2	0.3
22	0.0	-0.1	0.3
23	0.3	0.0	-12.4
24	-0.3	0.0	-12.5
25	0.0	0.1	-12.6
26	0.0	-0.2	-12.6
27	0.4	0.0	-12.6
28	-0.2	0.0	-12.7
29	0.1	0.2	-12.8
30	0.1	-0.1	-12.8
31	0.0	0.0	-15.7
32	0.1	0.0	-2.1
33	-0.3	0.0	-2.1
34	-0.1	0.1	-2.2
35	-0.1	-0.1	-2.2
36	0.2	0.0	-16.0
37	0.2	0.0	-2.4
38	-0.2	0.0	-2.5
39	0.1	0.1	-2.5
40	0.1	-0.1	-2.5

3.2.2 Combinazioni quasi permanenti

	Ux	Uy	Uz
	[mm]	[mm]	[mm]
1	0.0	0.0	-10.3

3.3 Verifica della reticolare

3.3.1 Ipotesi di base per la verifica della reticolare

Le aste sono state ottimizzate impostando una percentuale di utilizzo pari all'85%. La snellezza massima delle aste è stata invece fissata a 120.

3.3.2 Percentuale di utilizzo delle aste della reticolare

Nel seguito sono riportati, per ogni profilato impiegato la percentuale di profili che sviluppano uno stato di sollecitazione massimo rispettivamente:

- I Campo: minore del 33% della capacità resistente massima.
- II Campo: minore del 66% della capacità resistente massima.
- III Campo: NON superiore alla massima capacità resistente.
- IV Campo: SUPERIORE alla massima capacità resistente (Aste NON verificate).

Sezione tipo	I Campo	II Campo	III Campo	IV Campo
104 Tubi 114.3X3.6/intradosso	0.85 (39)	0.15 (7)	0.00(0)	0.00(0)
105 Tubi 139.7X4.0/intradosso	0.31 (35)	0.53 (59)	0.16 (18)	0.00(0)
106 Tubi 168.3X4.5/intradosso	0.13 (16)	0.59 (71)	0.28 (33)	0.00(0)
107 Tubi 168.3X6.3/intradosso	0.00(0)	0.24 (4)	0.76 (13)	0.00(0)
108 Tubi 219.1X6.3/intradosso	0.17 (12)	0.48 (34)	0.35 (25)	0.00(0)
109 Tubi 219.1X8.0/intradosso	0.00(0)	0.02 (1)	0.98 (44)	0.00(0)
110 Tubi 219.1X10.0/intradosso	0.00(0)	0.00(0)	1.00 (21)	0.00(0)
202 Tubi piccoli 76.1X3.2/diagonali	0.10 (2)	0.75 (15)	0.15 (3)	0.00(0)
203 Tubi piccoli 88.9X3.6/diagonali	0.00(0)	0.00(0)	1.00 (1)	0.00(0)
204 Tubi 114.3X3.6/diagonali	0.60 (176)	0.33 (95)	0.07 (20)	0.00(0)
205 Tubi 139.7X4.0/diagonali	0.47 (139)	0.38 (112)	0.15 (43)	0.00(0)
206 Tubi 168.3X4.5/diagonali	0.00(0)	0.58 (34)	0.42 (25)	0.00(0)
303 Tubi piccoli 88.9X3.6/estradosso	0.65 (22)	0.32 (11)	0.03 (1)	0.00(0)
304 Tubi 114.3X3.6/estradosso	0.38 (12)	0.56 (18)	0.06 (2)	0.00(0)
305 Tubi 139.7X4.0/estradosso	0.73 (32)	0.27 (12)	0.00(0)	0.00(0)
306 Tubi 168.3X4.5/estradosso	0.21 (16)	0.41 (32)	0.38 (30)	0.00(0)
307 Tubi 168.3X6.3/estradosso	0.00 (0)	0.11 (2)	0.89 (17)	0.00(0)
308 Tubi 219.1X6.3/estradosso	0.08 (4)	0.52 (26)	0.40 (20)	0.00(0)
309 Tubi 219.1X8.0/estradosso	0.00(0)	0.00(0)	1.00 (17)	0.00(0)
310 Tubi 219.1X10.0/estradosso	0.00(0)	0.00(0)	1.00 (10)	0.00(0)
311 Tubi 244.5X10.0/estradosso	0.00(0)	0.00(0)	1.00 (31)	0.00(0)
312 Tubi 273.0X12.5/estradosso	0.00(0)	0.44 (8)	0.56 (10)	0.00(0)

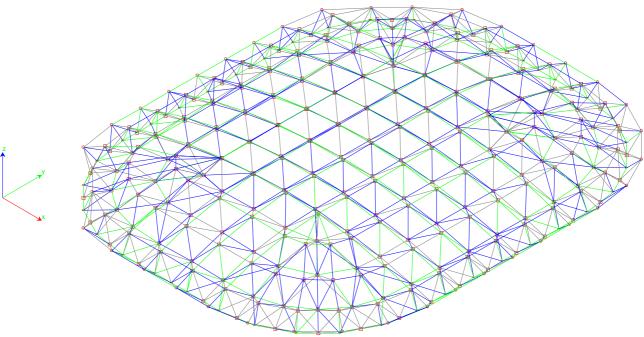
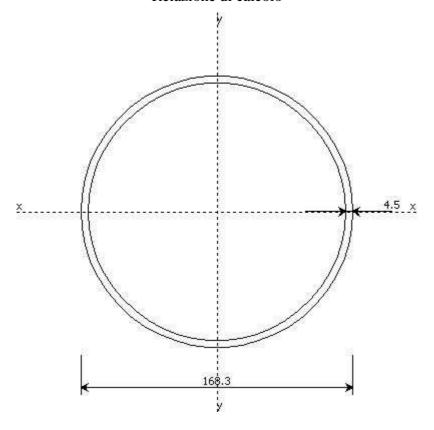


Figura 36: Rappresentazione grafica della percentuale di utilizzo delle aste della reticolare

3.3.3 Esempio di verifica di un'asta della reticolare

VERIFICHE ASTA DAL NODO 670 AL NODO 552

DATI GENERALI


Luce dell'asta: 5.2817 [m]

Sezione numero: 206 / Tubi 168.3X4.5 (diagonali)

Materiale: Acciaio

Tensione di snervamento : 355.0 [MPa] Tensione di rottura : 510.0 [MPa]

DATI INERZIALI PROFILO: Tubi 168.3X4.5

Area	2310 [mm²]	A.Traz	2310 [mm²]	L collegamento	0 [mm]
Jx	7731345 [mm^4]	ix	57.9 [mm]		
Wx	92057 [mm³]	Zx	120291 [mm³]		
Jy	7731346 [mm^4]	iy	57.9 [mm]		
Wy	91876 [mm³]	Zy	120292 [mm³]		
Jt	15421125 [mm^4]				
Cw	0 [mm^6]				

Curva di instabilità piano 1-2 : a Curva d'instabilità impostata dall'utente Curva di instabilità piano 1-3 : a Curva d'instabilità impostata dall'utente

Tubo

D 168.3 [mm] t 4.5 [mm]

 $\beta 12: 1.00$ $\beta 13: 1.00$

Materiale Acciaio fy: 355.0 [MPa] fu: 510.0 [MPa] Epsilon: 0.814

Coefficenti di sicurezza:

 $\gamma Mo \ 1.05 \\ \gamma M1 : 1.05 \\ \gamma M2 : 1.25$

Classificazione generale della sezione:

Compressione: 2 Flessione Mx: 2 Flessione My: 2

VERIFICA DI RESISTENZA

- Ms/Mr Max nella Combinazione 4. All'Ascissa 5.2817 [m]

- Caratteristiche inerziali della sezione trasversale:

Classe sezione : 2 Area : 2310 [mm²] Wx : 120291 [mm³] Wy : 120292 [mm³]

Azione Sollecitante		Sd/Sr
Sforzo Normale	222.766 [kN]	0.29
Momento Flettente Mx	0.000 [kNm]	0.00
Momento Flettente My	-0.000 [kNm]	0.00
		·
Ratio Massimo riscontrato		0.29VERIFICATA

N.B.

Il momento resistente Mnx è pari a 0.917 Mplx

Il momento resistente Mny è pari a 0.917 Mply

Per la verifica a PressoFlessione Biassiale si è utilizzata la formula binomia (Cfr. UNI EN 1993-1-1:2005 6.2.9.1 (6)) assumendo per gli esponenti i valori:

Alpha 2.00 Betha 2.00

VERIFICA DI INSTABILITA DA SFORZO NORMALE

Verifica di Instabilità nel Piano 1/2 / Profilo Singolo

Luce: 5.2817 [m]

Betha (Lc = Betha * Lnetta) : 1.00 Coeff. di Riduzione Betha A : 1.00 Raggio d'Inerzia i : 57.9 [mm] Snellezza dell'Asta : 91.29 Snellezza ridotta : 1.19 Curva di Instabilità : a Coeff. di Riduzione X : 0.53

Sforzo Normale Massimo	222.766 [kN]	Comb. 4
Nsd/Nrd	0.54	VERIFICATA

Verifica di Instabilità nel Piano 1/3 / Profilo Singolo

Luce: 5.2817 [m]

Betha (Lc = Betha * Lnetta) : 1.00 Coeff. di Riduzione Betha A : 1.00 Raggio d'Inerzia i : 57.9 [mm]

Snellezza dell'Asta : 91.29 Snellezza ridotta : 1.19 Curva di Instabilità : a Coeff. di Riduzione X : 0.53

Sforzo Normale Massimo	222.766 [kN]	Comb. 4
Nsd/Nrd	0.54	VERIFICATA

VERIFICA DI INSTABILITA A PRESSO-FLESSIONE

- Caratteristiche inerziali della sezione trasversale:

Classe sezione : 2 Area : 2310 [mm²] Wx : 120291 [mm³] Wy : 120292 [mm³] - Piano di Verifica 1-2 :

- Verifica di Instabilità nel Piano 1/2 / Profilo Singolo

Luce: 5.2817 [m]

Betha (Lc = Betha * Lnetta) : 1.00 Coeff. di Riduzione Betha A : 1.00 Raggio d'Inerzia i : 57.9 [mm] Snellezza dell'Asta : 91.29 Snellezza ridotta : 1.19 Curva di Instabilità : a Coeff. di Riduzione X : 0.53

Sforzo Normale Massimo	222.420 [kN]	Comb. 4

- Piano di Verifica 1-3:

- Verifica di Instabilità nel Piano 1/3 / Profilo Singolo

Luce: 5.2817 [m]

Betha (Lc = Betha * Lnetta) : 1.00 Coeff. di Riduzione Betha A : 1.00 Raggio d'Inerzia i : 57.9 [mm] Snellezza dell'Asta : 91.29 Snellezza ridotta : 1.19 Curva di Instabilità : a

Coeff. di Riduzione X: 0.53

Sforzo Normale Massimo	222.420 [kN]	Comb. 4

Verifica condotta in accordo a EC3 UNI EN 1993-1-1:2005 paragrafo 6.3.3 e appendice A.

- Snellezze e Fattori di interazione dei momenti flettenti

Piano	λ	X	μ	Cm
1-2	1.19	0.53	0.77	0.651 NON Lineare
1-3	1.19	0.53	0.77	1.093 Lineare

- Fattori di Interazione

aLT0.000

bLT0.000

cLT0.000

dLT0.000

eLT0.000

Суу	1.06	Cyz	0.63
Czy	0.98	Czz	0.84
kyy	0.78	kyz	1.32
kzy	0.50	kzz	1.64

Ratio Max nella Combinazione 4

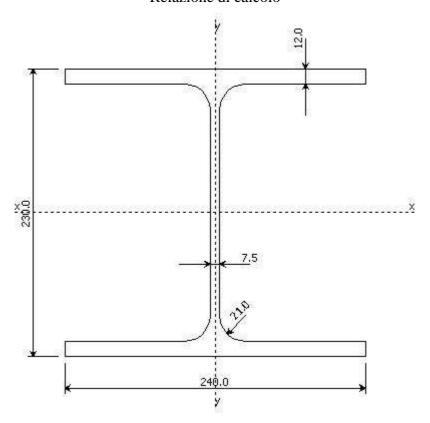
Azione Sollecitante		Sd/Sr
Sforzo Normale	222.420 [kN]	0.53
Momento Flettente Mx	0.678 [kNm]	0.01
Momento Flettente My	0.000 [kNm]	0.00
Ratio Massimo riscontrato		0.55VERIFICATA

3.4 Verifica delle travi laterali

3.4.1 Verifica di resistenza delle travi laterali

VERIFICHE ASTA DAL NODO 227 AL NODO 269

DATI GENERALI


Luce dell'asta: 1.3861 [m]

Sezione numero: 1 / HEA 240 (travi curve)

Materiale : Acciaio

Tensione di snervamento : 355.0 [MPa] Tensione di rottura : 510.0 [MPa]

DATI INERZIALI PROFILO: HEA 240

Area	7699 [mm²]	A.Traz	7699 [mm²]	L collegamento	0 [mm]
Jx	77775801 [mm^4]	ix	100.5 [mm]		
Wx	676312 [mm³]	Zx	746127 [mm³]		
Jy	27690801 [mm^4]	iy	60.0 [mm]		
Wy	230757 [mm³]	Zy	351873 [mm³]		
Jt	415519 [mm^4]				
Cw	328486000000 [mm^6]				

Curva di instabilità piano 1-2 : b Curva di instabilità piano 1-3 : c

Doppio T

B 240.0 [mm]

H 230.0 [mm]

tf 12.0 [mm]

tw 7.5 [mm]

r 21.0 [mm]

 $\beta 12:1.00$

 $\beta 13:1.00$

Materiale Acciaio

fy: 355.0 [MPa] fu: 510.0 [MPa] Epsilon: 0.814

Coefficenti di sicurezza:

 $\gamma Mo \ 1.05 \\ \gamma M1 : 1.05$

 $\gamma M2 : 1.25$

Classificazione generale della sezione:

Compressione: 2 Flessione Mx: 2 Flessione My: 2

VERIFICA DI RESISTENZA

Ms/Mr Max nella Combinazione 26. All'Ascissa 0.0000 [m]

Caratteristiche inerziali della sezione trasversale:

Classe sezione : 2 Area : 7699 [mm²] Wx : 746127 [mm³] Wy : 351873 [mm³]

Azione Sollecitante		Sd/Sr
Sforzo Normale	74.719 [kN]	0.03
Momento Flettente Mx	-176.052 [kNm]	0.70
Momento Flettente My	0.832 [kNm]	0.01
Taglio Ty	-19.523 [kN]	0.04
Ratio Massimo riscontrato	·	0.70VERIFICATA

N.B.

L'area resistente a taglio è pari a 2533 [mm²]

VERIFICA DI INSTABILITA DA SFORZO NORMALE

Verifica di Instabilità nel Piano 1/2 / Profilo Singolo

Luce: 1.3861 [m]

Betha (Lc = Betha * Lnetta) : 1.00 Coeff. di Riduzione Betha A : 1.00 Raggio d'Inerzia i : 100.5 [mm] Snellezza dell'Asta : 13.79 Snellezza ridotta : 0.18 Curva di Instabilità : b Coeff. di Riduzione X : 1.00

Sforzo Normale Massimo	74.719 [kN]	Comb. 26
Nsd/Nrd	0.03	VERIFICATA

Verifica di Instabilità nel Piano 1/3 / Profilo Singolo

Luce: 1.3861 [m]

Betha (Lc = Betha * Lnetta) : 1.00 Coeff. di Riduzione Betha A : 1.00 Raggio d'Inerzia i : 60.0 [mm] Snellezza dell'Asta : 23.11 Snellezza ridotta : 0.30 Curva di Instabilità : c Coeff. di Riduzione X : 0.95

Sforzo Normale Massimo	74.719 [kN]	Comb. 26
------------------------	-------------	----------

VERIFICA DI INSTABILITÀ FLESSOTORSIONALE (SVERGOLAMENTO)

Dati di Verifica

Luce dell'asta libera di svergolare : 2.7722 [m]

Fattore di lunghezza effettiva k : 1.00

Fattore di ritegno torsionale d'estremità kw : 1.00

Eccentricità fra il centro di taglio ed il

punto di applicazione dei carichi esterni zg: 115.0 [mm]

Fattore zj : 0.0 [mm]

Andamento del diagramma del momento flettente	NON Lineare
Coefficienti di interazione carico vincoli	
C1	1.285
C2	1.562
C3	0.753
Momento critico d'instabilitàMcr	396.176 [kNm]
Snellezza adimensionale	0.818
Curva di instabilità	a
Coefficiente di riduzione per instabilitàXLT	0.785
Sezione in Classe	2
Momento massimo agente nella combinazione 26	-176.052 [kNm]
Msd/Mbrd	0.889VERIFICATA

VERIFICA DI INSTABILITA A PRESSO-FLESSIONE

Caratteristiche inerziali della sezione trasversale:

Classe sezione : 2 Area : 7699 [mm²] Wx : 746127 [mm³] Wy : 351873 [mm³]

Piano di Verifica 1-2:

Verifica di Instabilità nel Piano 1/2 / Profilo Singolo

Luce: 1.3861 [m]

Betha (Lc = Betha * Lnetta) : 1.00 Coeff. di Riduzione Betha A : 1.00 Raggio d'Inerzia i : 100.5 [mm] Snellezza dell'Asta : 13.79 Snellezza ridotta : 0.18 Curva di Instabilità : b Coeff. di Riduzione X : 1.00

Sforzo Normale Massimo	74.719 [kN]	Comb. 26
------------------------	-------------	----------

Piano di Verifica 1-3:

Verifica di Instabilità nel Piano 1/3 / Profilo Singolo

Luce: 1.3861 [m]

Betha (Lc = Betha * Lnetta) : 1.00 Coeff. di Riduzione Betha A : 1.00

Raggio d'Inerzia i : 60.0 [mm] Snellezza dell'Asta : 23.11 Snellezza ridotta : 0.30 Curva di Instabilità : c Coeff. di Riduzione X : 0.95

|--|

Verifica condotta in accordo a EC3 UNI EN 1993-1-1:2005 paragrafo 6.3.3 e appendice A.

Snellezze e Fattori di interazione dei momenti flettenti

Piano	λ	X	μ	Cm
1-2	0.18	1.00	1.00	1.000 NON Lineare
1-3	0.30	0.95	1.00	0.998 NON Lineare
LTo	0.53	0.92		
LT	0.82	0.79		0.996

Fattori di Interazione

aLT0.995

bLT0.001

cLT0.487

dLT0.060

eLT7.282

Суу	1.00	Cyz	0.78
Czy	1.00	Czz	0.66
kyy	0.99	kyz	0.89
kzy	0.51	kzz	1.53

Ratio Max nella Combinazione 26

Azione Sollecitante		Sd/Sr
Sforzo Normale	74.719 [kN]	0.03
Momento Flettente Mx	176.052 [kNm]	0.88
Momento Flettente My	0.832 [kNm]	0.01
Ratio Massimo riscontrato	·	0.92VERIFICATA